Subscribe to RSS - Fisheries

Abstract

This report presents the results of EcoAdapt’s efforts to survey adaptation action in marine fisheries management by examining the major climate impacts on marine and coastal fisheries in the United States, assessing related challenges to fisheries management, and presenting examples of actions taken to decrease vulnerability and/or increase resilience. First, we provide a summary of climate change impacts and secondary effects on fisheries, focusing on changes in air and water temperatures, precipitation patterns, storms, ocean circulation, sea level rise, and water chemistry.

Location

United States
48° 54' 11.6856" N, 84° 48' 52.0308" W
US

Project Summary/Overview

This integrated research project, which ran from 2007-2008, was initiated to better understand the implications of projected climate change impacts and adaptation responses on southern Ontario’s fish, fisheries, and water resources. Climate change will have predominantly negative effects on species and habitats, and resulting economic effects are expected to be devastating to the region. In addition, changes in temperature and precipitation patterns will require alterations to water resources planning and management.

Email Address: 
Title: 
Associate

Abstract

While previous research has documented marine fish and invertebrates shifting poleward in response to warming climates, less is known about the response of fisheries to these changes. By examining fisheries in the northeastern United States over the last four decades of warming temperatures, we show that northward shifts in species distributions were matched by corresponding northward shifts in fisheries. The proportion of warm-water species caught in most states also increased through time.

Abstract

Several studies have documented fish populations changing in response to long-term warming. Over the past decade, sea surface temperatures in the Gulf of Maine increased faster than 99% of the global ocean. The warming, which was related to a northward shift in the Gulf Stream and to changes in the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, led to reduced recruitment and increased mortality in the region’s Atlantic cod (Gadus morhua) stock. Failure to recognize the impact of warming on cod contributed to overfishing.

Abstract

Research on changes in a coupled marine system of the Mid-Atlantic Bight, focusing on Atlantic surfclams and the associated fishery and management system, is reviewed for how the human dimensions of this coupled socio-ecological system are addressed by the researchers.

Abstract

Marine fisheries management strives to maintain sustainable populations while allowing exploitation. However, well-intentioned management plans may not meet this balance as most do not include the effect of climate change. Ocean temperatures are expected to increase through the 21st century, which will have far-reaching and complex impacts on marine fisheries. To begin to quantify these impacts for one coastal fishery along the east coast of the United States, we develop a coupled climate–population model for Atlantic croaker (Micropogonias undulatus).

Abstract

We examined the potential impacts of future climate change on the distribution and production of Atlantic cod (Gadus morhua) on the northeastern USA’s continental shelf. We began by examining the response of cod to bottom water temperature changes observed over the past four decades using fishery-independent resource survey data. After accounting for the overall decline in cod during this period, we show that the probability of catching cod at specified locations decreased markedly with increasing bottom temperature.

Abstract

The National Oceanic and Atmospheric Administration (NOAA) Series, U.S. Caribbean Fishing Communities, is the result of the Southeast Fisheries Science Center’s Caribbean Sustainable Fishing Communities Initiative, which was brought about by the recognition that the success of coral reef conservation strategies hinges on the ability to reconcile the need to protect coral reef and associated environments with the local cultural, economic, political and social requirements of coastal communities.

Pages

Subscribe to RSS - Fisheries