Environmental Surveillance & Wildlife Adaptation

PrintDownload

Application deadline: 1/5/2018 11:59 PM Eastern Time Zone

Description

The Minority Serving Institutions Partnership Program (MSIPP) Internships is a new program to promote the education and development of the next generation workforce in critical science, engineering, technology, and math (STEM) related disciplines that complement current and future missions of DOE national laboratories.  The MSIPP Internship program is designed to provide an enhanced training environment for next generation scientists and engineers by exposing them to research challenges unique to our industry. 

MSIPP Interns will be given the opportunity to complete Summer Internships aligned with ongoing U.S. Department of Energy Office of Environmental Management (DOE-EM) research under the direction of a host national laboratory.  The internship will be performed at the host national laboratory, utilizing their facilities and equipment under the guidance of a research staff member.

Minority Serving Institutions are institutions of higher education enrolling populations with significant percentages of undergraduate minority students. 

Project: This project will study the changes in arthropod-borne diseases with respect to climate pressures and environmental conditions in a migratory bird population and in mosquitoes over a latitudinal gradient. Using a long-term population study site of a cavity-nesting bird, the western bluebird (Sialia mexicana), in the southern Rocky Mountains (New Mexico) in combination with additional study sites located along the range of the Rocky Mountains (Colorado, Wyoming, Montana) (Fig. 1), we will explore the relative impacts of these environmental variables on the dynamics of arthropod borne diseases. We will use statistical models to estimate correlations between changes in abiotic and biotic factors related to climate and mosquito-borne disease in the system, allowing for nonlinear responses. We will then adapt mechanistic disease and population dynamics models to our system, informing parameters with the statistical analysis, allowing for prediction of system states under future climate regimes and novel fusion of mechanistic and statistical models that leverages strengths of both approaches. We will leverage the genomic expertise at LANL measure the metagenome and Plasmodium in mosquitoes at the different latitudes. We will use an abundant cavity-nesting species, the western bluebird (Sialia mexicana) and will model the demographics and dynamics of this population and the relationship to pathogens found in mosquito populations along a latitudinal gradient of the Rocky Mountains.

We will leverage a long-term monitoring project on cavity-nesting birds in New Mexico and to compare to three northern Rocky Mountain populations and analyze past Plasmodium prevalence in the southern population over the last 20 years. Environmental factors will vary between the four sites, and we predict that infection status will vary widely with them. This monitoring is novel in that prevalence in both birds and mosquitoes as well as seroprevalence of Plasmodium will measured. We will use Plasmodium data to examine competing hypotheses regarding the impact of these climate-driven stressors on known mosquito borne diseases and other pathogens collected in mosquitoes.

Location: This internship will be located at Los Alamos National Laboratory.

Salary: Selected candidate will be compensated by either a stipend or salary, and may include one round trip domestic travel to and from the host laboratory. Stipends and salaries will be commensurate with cost of living at the location of the host laboratory. Housing information will be provided to interns prior to arrival at the host laboratory, and will vary from lab to lab.