Filter by Type

Restoring the Jamaica Bay Wetlands, Gateway National Recreation Area, New York

Amanda Babson, Patricia Rafferty, and Amanda Babson
Created: 11/25/2015 - Updated: 7/09/2019

Photo attributed to GK tramrunner229. Incorporated here under the Creative Commons Attribution 3.0 Unported license. No endorsement by licensor implied.

Summary

Gateway National Recreation Area partnered with other state and federal agencies to restore wetlands in Jamaica Bay, a eutrophic urban estuary, through sediment addition and plantings. While the project was not driven by climate change concerns, addressing marsh elevation loss is consistent with methods to address sea level rise. The monitoring program strives to determine factors contributing to project performance; to test several experimental techniques; to develop and justify adaptive management actions; and to better understand factors contributing to marsh loss throughout Jamaica Bay.

Background

Historically, Jamaica Bay’s extensive marsh islands, tidal creeks, and mud flats served as important nursery and feeding grounds for fish. The quantity and quality of bay habitat has declined due to urban development, shoreline hardening, channel dredging, sewage treatment plant operations, and causeway and jetty construction. Emergent salt marsh islands have converted to intertidal and subtidal mudflats. The current (2003–2008) annual average rate of salt marsh island loss is 7.7 ha (19 ac) per year, a rate that is high in terms of both annual loss and percentage by area. That loss is likely to be further exacerbated by sea level rise. 

Implementation

In response to public recognition and concern about the loss of salt marsh habitat and functions within the Jamaica Bay ecosystem, an interagency wetland restoration project was developed. Compliance and design work were completed by a contractor for the first restoration site in 2006 and by the US Army Corps of Engineers (USACE) and an interagency team for subsequent sites under special use permits. USACE performed the National Environmental Policy Act (NEPA) planning, which the National Park Service (NPS) adopted to issue a Finding of No Significant Impact. 

Restoration methods were based on ecological expertise, NPS policies, bio-benchmarks (elevation requirements for vegetation), and engineering guidance from the USACE. Using a variety of experimental techniques, sediment was added to the marsh surface to increase elevation, and vegetation was planted or relocated. A comprehensive monitoring and adaptive management program has been implemented at each restoration site; data are collected prior to restoration and will continue for five years following restoration. Monitoring results and practical experience gained at each restoration site are used to improve planning and execution at subsequent sites. Research efforts focus on mechanisms of salt marsh loss, including regional sea level rise, hydrologic modifications, and eutrophication. 

Outcomes and Conclusions

The project faced several challenges. Development of a functional interagency team was not smooth at first but has become one of the project’s successes. When construction funding could not be secured, the project was repackaged as a beneficial use project for sediment dredged by a harbor deepening project. Because USACE policies limit monitoring to 1% of project costs, NPS funding and in-kind cost sharing were used to maximize limited resources. Initially, partners did not support the NPS preference for higher-elevation marsh, which supports a different species assemblage and which builds in resilience under sea level rise; fortunately restoration at each successive site has included increasingly more high marsh.

The park obtained fiscal year 2014 funding through the NPS servicewide combined call to support research that will focus on marsh response to sea level rise and that will populate published models with project monitoring data. 

Future restoration efforts may be inhibited by the availability of a cost-effective clean source of sediment. NPS and park standards for sediment quality that exceed Environmental Protection Agency and New York Department of Environmental Conservation standards were met with resistance from funding partners. Fund transfer mechanisms among state and federal partners will likely be a recurring challenge. Another challenge is the inability of restoration fund sources to support basic research that would improve restoration by optimizing techniques or identifying the causes of marsh loss. For example, this project would have benefitted from a better understanding of the tidal range, and the elevation range for saltmarsh cordgrass (Spartina alterniflora) growth within Jamaica Bay, in order to restore marshes to the maximum elevation at which the desired habitat could establish. Site-specific data relating to shallow subsidence and compaction would have improved estimates for the fill volume required to achieve design elevations. 

-------

This case study is part of the 2015 National Park Service report, Coastal Adaptation Strategies: Case Studies. These case studies initially were developed by park managers as part of a NPS-led coastal adaptation training in May 2012. The case studies follow the format created for EcoAdapt’s Climate Adaptation Knowledge Exchange (CAKE) database, including a list of adaptation strategies. All case studies were updated and modified in September 2013 and March 2015 in response to a growing number of requests from coastal parks and other coastal management agencies looking for examples of climate change adaptation strategies for natural and cultural resources and assets along their ocean, lacustrine, and riverine coasts.

Status

Submitted by user and reviewed by CAKE Content Editor November 2015

Citation

Rafferty, P. & A. Babson. (2015). Restoring the Jamaica Bay Wetlands, Gateway National Recreation Area, New York [Case study on a project of the Gateway National Recreation Area]. Excerpted from Schupp, C.A., R.L. Beavers, and M.A. Caffrey [eds.]. 2015. Coastal Adaptation Strategies: Case Studies. NPS 999/129700. National Park Service, Fort Collins, Colorado. Retrieved from CAKE: www.cakex.org/case-studies/restoring-jamaica-bay-wetlands-gateway-nation...(Last updated November 2015)

Project Contacts

There are three geographic units: Sandy Hook, New Jersey; Jamaica Bay and Staten Island, New York City. The NYC units include Jamaica Bay Wildlife Refuge, Fort Tilden, Riis Park in Queens, Floyd Bennett Field and Canarsie Pier in Brooklyn. Staten Island has Great Kills Park, Miller Field and Fort Wadsworth. These sites and others make up the 27,000 acres of Gateway, one national park. 

Keywords

Target Climate Changes and Impacts: 
Erosion
Flooding
Flow patterns
Sea level rise
Water quality
Climate Type: 
Temperate
Type of Adaptation Action/Strategy: 
Natural Resource Management / Conservation
Reduce local climate or related change
Capacity Building
Coordinate planning and management
Conduct / Gather additional research, data, and products

Related Resources

Photo attributed to Joseph Zarro. Incorporated here under the Creative Commons Attribution-Share Alike 4.0 Internationallicense. No endorsement by licensor implied.

Case Study

Photo attributed to Maekju. This work has been released into the public domain by its author. No endorsement by licensor implied.

Case Study

This image has been released into the public domain because it contains materials that originally came from the National Park Service. No endorsement by licensor implied.

Case Study

Photo attributed to Acroterion. Incorporated here under the Creative Commons Attribution-Share Alike 4.0 Internationallicense. No endorsement by licensor implied.

Case Study

Photo attributed to Bering Land Bridge Natinal Preserve. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to Education Specialist. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to Ebyabe. Incorporated here under the Creative Commons Attribution 3.0 Unported license. No endorsement by licensor implied.

Case Study

Photo attributed to Steam Pipe Trunk Distribution Venue. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to Bohemian Baltimore. Incorporated here under the Creative Commons Attribution-Share Alike 4.0 International license. No endorsement by licensor implied.

Case Study

Photo attributed to Bonnie Gruenberg. Incorporated here under the Creative Commons Attribution-Share Alike 3.0 Unported license. No endorsement by licensor implied.

Case Study

Photo attributed to the NPS/Michael B. Edwards. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to Joe Parks. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to the dronepicr. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

This image has been released into the public domain because it contains materials that originally came from the United States National Aeronautics and Space Administration (NASA). No endorsement by licensor implied.

Case Study

Photo attributed to Bruce Tuten. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Photo attributed to Rich Niewiroski Jr. Incorporated here under the Creative Commons Attribution 2.5 Generic license. No endorsement by licensor implied.

Case Study

Photo attributed to Tony Webster. Incorporated here under the Creative Commons Attribution-Share Alike 2.0 Generic license. No endorsement by licensor implied. No endorsement by licensor implied.

Case Study

Photo attributed to Edibobb. Incorporated here under the Creative Commons Attribution 3.0 Unported license. No endorsement by licensor implied.

Case Study

This image has been released into the public domain because it contains materials that originally came from the National Park Service. No endorsement by licensor implied.

Case Study

Photo attributed to Robert Campbell, robertcampbellphotography.com. No endorsement by author implied.

Case Study

Photo attributed to USGS. Incorporated here under a Creative Commons Attribution 2.0 Generic License. No endorsement by licensor implied.

Case Study

Translate this Page