Mitigation and Adaptation Emissions Embedded in the Broader Climate Transition

Posted by
CAKE TeamPublished
Abstract
Climate change necessitates a global effort to reduce greenhouse gas emissions while adapting to increased climate risks. This broader climate transition will involve large-scale global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, all of which will result in CO2 emissions from energy and materials use. Yet, the magnitude of the emissions embedded in theseinterventions remains unconstrained, opening the potential for under accounting of emissions and conflicts or synergies between mitigation and adaptation goals.
Here, we use a suite of models to estimate the CO2 emissions embedded in the broader climatetransition. For a gradual decarbonization pathway limiting warming to 2°C, selected adaptation-related interventions will emit∼1.3 GtCO2 through 2100, while emissions from energy used to deploy renewable capacity are much larger at∼95 GtCO2.Together, these emissions are equivalent to over 2 y of current global emissions and8.3% of the remaining carbon budget for 2°C. Total embedded transition emissions are reduced by ∼80% to 21.2 GtCO2 under a rapid pathway limiting warming to 1.5°C. However, they roughly double to 185 GtCO2 under a delayed pathway consistent with current policies (2.7°C warming by 2100), mainly because a slower transition relies more on fossil fuel energy.
Our results provide a holistic assessment of carbon emissions from the transition itself and suggest that these emissions can be minimized through more ambitious energy decarbonization. We argue that the emissions from mitigation, but likely much less so from adaptation, are of sufficient magnitude to merit greater consideration in climate science and policy.
Significance:
Adapting to increasing climate risks while deploying renewables to stabilize the climate will require large amounts of energy and materials, which will initially cause emissions. We provide an estimate of the CO2 emissions embedded in this broader climatetransition, which were previously poorly quantified. Fossil fuel energy use to deploy renewables contributes the vast majority of embedded emissions, with a much smaller contribution from adaptation. As a result, embedded emissions increase substantially for slower decarbonization pathways. However, when renewables are rapidly deployed,the ongoing transition can be powered by cleaner energy,minimizing embedded emissions. Our results demonstrate an underappreciated benefit of enhanced climate ambition and the importance of accounting for embedded transition emissions to achieve climate objectives.
Citation
Corey Leska, Denes Csala, Robin Hasse, Sgouris Sgouridis, Antoine Levesque, Katharine J. Mach, Daniel Horen Greenford,H. Damon Matthews, Radley M. Horton. Mitigation and Adaptation Emissions Embedded in the Broader Climate Transition. PNAS, 119 (47): e2123486119. https://doi.org/10.1073/pnas.2123486119.