Progress on the NorWeST Stream Temperature Climate Scenarios

Dan Isaak, Seth Wenger¹, Erin Peterson², Jay Ver Hoef³ Charlie Luce, Steve Hostetler⁴, Jason Dunham⁴, Jeff Kershner⁴, Brett Roper, Dave Nagel, Dona Horan, Gwynne Chandler, Sharon Parkes, Sherry Wollrab

How Will Global Climate Change Affect Streams & Rivers Locally? Regional

Global climate

River network temperatures

Stream reach

climate

There's A Lot on the Line...

Climate Boogeyman

Recreational Fisheries

Low Flows Prompt Fishing Closure On Upper Beaverhead River And Reduced Limits On Clark Canyon Reservoir

Wednesday, September 29, 2004 Fishing

High Water

Temperature In Grande

 \$4 Billion on Fish & Wildlife Recovery Efforts in PNW
 Since 1980 (ISAB/ISRP 2007)

ESA Listed Species

hent

Many GCMs for Air Temperature & Precipitation Exist...

Mote & Salathe 2010

Air Temp *≠* Stream Temp

Accurate Local Information Needed to Empower Local Decision Makers

Strategic assessments from regional models

I'm going to invest here... ... instead of here

Lots of Stream Temp Data Out There...

NorWeST ≈≈Stream Temp

>45,000,000 hourly records >15,000 unique stream sites

Spatial Statistical Network Models for Climate Downscaling

Valid interpolation on networks

-flexible & valid covariance structures by accommodating network topology
-weighting by stream size
-improved predictive ability & parameter estimates relative to non spatial models

Ver Hoef et al. 2006; Peterson & Ver Hoef 2010; Ver Hoef & Peterson 2010

Regional Temperature Model

Cross-jurisdictional "maps" of stream climate scenarios

Moscow

0 93x + 0 830

Consistent datum for strategic assessments across 400,000 stream kilometers

Boise

Bozeman

Missoula

Example: Clearwater River Basin Data extracted from NorWeST

Climatic Variability in Historical Record Extreme years include mid-21st-Century "averages"

Clearwater River Temp Model n = 4,487**Mean August Temperature** C 25 **Covariate Predictors** r² = 0.95; RMSE = 0.60°C 1. Elevation (m) - 20 Predicted 10 2 2. Canopy (%) 3. Stream slope (%) 4. Ave Precipitation (mm) 5. Latitude (km) **Spatial Model** 6. Lakes upstream (%) 5 7. Baseflow Index 10 15 20 25 8. Watershed size (km²) Observed (C)

9. Discharge (m³/s)
USGS gage data
10. Air Temperature (°C)
RegCM3 NCEP reanalysis
Hostetler et al. 2011

Models Enable Climate Scenario Maps

Many possibilities exist...

Adjust...

• Air

- Discharge
- %Canopy

... values to create scenarios

NorWeST Scenario Descriptions

Scenario	Description
S1_93_11	Historical scenario representing 19 year average
- Ale	August mean stream temperatures for 1993-2011
S2_02_11	Historical scenario representing 10 year average
	August mean stream temperatures for 2002-2011
S3_1993	Historical scenario representing August mean
10 10 10	stream temperatures for 1993
S4_1994	Historical scenario representing August mean
	stream temperatures for 1994
Etc	
Section 2	
S21_2011	Historical scenario representing August mean
	stream temperatures for 2011
S22+	Futures: 1) IPCC scenarios for 2040s and 2080s;
The Color	2) "scenario free (e.g., $+1^{\circ}C$, $+2C$, etc.)

Future Stream Temperature Increases Scenario: A1B ensemble averages from CIG (delta-hybrid) Baseline: 1980s (1970-1999) period

Spokoot

Nissouri

Rule of thumb: streams warm ~50% as fast as air temps increase

Cleannater

What Causes Future Stream Increases? Scenario: A1B ensemble averages from CIG (2040s) Baseline: 1980s (1970-1999) period

Air temperature : discharge proportion

Clearwater Stream Temperature Scenario Historic (1993-2011 Average August)

1 kilometer resolution

Clearwater Stream Temperature Scenario +1.00°C Stream Temp

Clearwater Stream Temperature Scenario +2.00°C Stream Temp

Develop Regionally Consistent Thermal Niche Definitions

Wenger et al. 2011a. PNAS 108:14175-14180

Wenger et al. 2011b. CJFAS 68:988-1008; Wenger et al., In Preparation

Climate Effects on Cutthroat Thermal Habitat Historic (1993-2011 Average August)

Climate Effects on Cutthroat Thermal Habitat +1.00°C Stream Temp (~2040s)

Climate Effects on Cutthroat Thermal Habitat +2.00°C Stream Temp (~2080s)

Climate Effects on Bull Trout Thermal Habitat Historic (1993-2011 Average August)

Climate Effects on Bull Trout Thermal Habitat +1.00°C Stream Temp (~2040s)

Climate Effects on Bull Trout Thermal Habitat +2.00°C Stream Temp (~2080s)

Isaak & Rieman. 2013. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. *Global Change Biology* 19:742-751.

Difference Map Shows Vulnerable Habitats +1°C stream temperature scenario Where to invest?

Climate-Smart Strategic Prioritization of Restoration •Maintaining/restoring flow...

Maintaining/restoring flow...
Maintaining/restoring riparian...
Restoring channel form/function...
Prescribed burns limit wildfire risks...
Non-native species control...
Improve/impede fish passage...

High

Priority

Low

Priority

NorWeST is "Crowd-Sourced" so Everyone's Skin is in the Game

Coordinated Management Responses?

Data Collected by Local Bios & Hydros

Management Decisions

Website Distributes Scenarios & Temperature Data as GIS Layers

1) GIS shapefiles of stream temperature scenarios

Regional Database and Modeled Stream Temperatures

3) Temperature data summaries

2) GIS shapefiles of stream temperature model prediction precision

+ = Thermograph = Prediction SE

Google "NorWeST" or go here... http://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.shtml

NorWeST Facilitating Related Projects

JTBI-00

- •Regional bull trout climate vulnerability assessment (J. Dunham)
- •Cutthroat & bull trout climate decision support tools (Peterson et al., 2013)
- •Landscape-scale bull trout monitoring protocol (Isaak et al. 2009)
- •Consistent thermal niche definitions & more accurate bioclimatic models for trout & nongame fishes (S. Wenger, In Prep.)
- •Efficient stream temperature monitoring designs

NorWeST Status & Schedule

A Special Thanks to These 60+ Partner Agencies...

Stream Thermalscape so far...

The BLOB... it just keeps growing...
171,000 stream kilometers of thermal ooze
16,688 summers of data swallowed