Rapid Vulnerability Assessment and Adaptation Strategies for the National Marine Sanctuary and Territory of American Samoa

2017
Cover photos: National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, National Marine Sanctuary of American Samoa
Rapid Vulnerability Assessment and Adaptation Strategies for the National Marine Sanctuary and Territory of American Samoa

2017

P.O. Box 11195
Bainbridge Island, WA 98110

Citation:

For more information about this report, please contact Alex Score at Alex@EcoAdapt.org.
Contributors
Alessandra Score, EcoAdapt
Rachel M. Gregg, EcoAdapt
Whitney Reynier, EcoAdapt
Laura Hilberg, EcoAdapt
Joseph Paulin, National Marine Sanctuary of American Samoa
Sara Hutto, Greater Farallones National Marine Sanctuary
Catherine Marzin, Office of National Marine Sanctuaries
Kelley A. Tagarino, University of Hawaiʻi Sea Grant College Program & American Samoa Community College (National Marine Sanctuary of American Samoa Advisory Council)

Acknowledgements
This work would not have been possible without the input of workshop participants throughout both the vulnerability assessment workshop and the adaptation strategy development workshop. We would like to thank the National Marine Sanctuary of American Samoa Advisory Council (NMSASAC), National Marine Sanctuary of American Samoa (NMSAS) Superintendent Gene Brighouse and Deputy Superintendent Atuatasi Lelei Peau, Greater Farallones National Marine Sanctuary (GFNMS) Superintendent Maria Brown and Catherine Marzin the Office of National Marine Sanctuaries (ONMS) Climate Lead for project support. We would like to thank Sara Hutto from the GFNMS for leading the vulnerability assessment workshop and Joseph Paulin from the NMSAS for helping with all logistics. We would like to thank the NMSAS Team for support implementing the workshops, especially Apulu Veronika Molioʻo Mataʻutia Mortenson for translation. We would like to especially thank the following reviewers: Charles Birkland, University of Hawaiʻi at Manoa, Jeremy Raynal, American Samoa Coral Reef Advisory Group (CRAG), Kelley A. Tagarino, NMSASAC Project Lead, University of Hawaiʻi Sea Grant College Program & American Samoa Community College (ASCC), Melissa Snover, Ecologist, Scott Burch, National Park of American Samoa (NPSA) and Mareike Sudek, NMSAS. This project has been made possible with support of the National Marine Sanctuary Foundation, www.marinesanctuary.org.
Participant List: Vulnerability Assessment Workshop (July 19-20, 2016)
Sara Hutto, GFNMS (facilitator)
Gene Brighouse, NMSAS (Superintendent)
Atuatasi Lelei Peau, NMSAS (Deputy Superintendent)
Apulu Veronika Molio’o Mata’utai Mortenson, NMSAS (translator)
Joseph Paulin, NMSAS (workshop coordinator)
Melissa Snover, NMSAS (small group facilitator)
Isabel Gaoteote Halatuitui, NMSAS (note taker)
Tanimalie Letuli, NMSAS (note taker)

Participants:
Scott Burch, NPSA (NMSASAC) Hideyo Hatori, NOAA CRCP Mareike Sudek, CRAG/DMWR
Mia Comeros, ASEPA Sabrina Woofter, CRAG Motusaga Valoso, CRAG
Cecelia Reid, ASEPA Kim McGuire, CRAG/DMWR Jeremy Raynal, CRAG
Mariana Pato, ASEPA Lei Pelle, CRAG Tantasi Falanai, DOE
Fatima Samafea-Liau, NMFS (NMSASAC)

Participant List: Adaptation Strategy Workshop (September 14-15, 2016)
Alessandra Score, EcoAdapt (facilitator)
Rachel M. Gregg, EcoAdapt (facilitator)
Catherine Marzin, ONMS (presenter)
Kelley Tagarino, Sea Grant, ASCC, NMSASAC (presenter, small group facilitator)
Kim McGuire, CRAG/DMWR (presenter)
Gene Brighouse, NMSAS (Superintendent)
Atuatasi Lelei Peau, NMSAS (Deputy Superintendent)
Apulu Veronika Molio’o Mata’utai Mortenson, NMSAS (translator)
Joseph Paulin, NMSAS (workshop coordinator)
Melissa Snover, NMSAS (small group facilitator)
Isabel Gaoteote Halatuitui, NMSAS (note taker)
Tanimalie Letuli, NMSAS (note taker)

Participants:
Mike King, ASPA Kim McGuire, CRAG/DMWR Doug Fenner, NOAA
Edna Noga, ASPA Soli Ofoia, Mayor Vaitogi DJ Sene, ASCC/Land Grant
Utu Abe Malae, ASPA Director Hideyo Hattori, NOAA CRCP Alden Tagarino, ASCC
Jason Jaskowiak, ASPA Jose Rose, OCI/DOE O. Tovola, ASCC
Shaun Salave’a, Leone Tim Clark, NPSA Ruby Tadua, ASCC
R.T. Toelupe, Leone Tricia Sataua, ASEPA Annabelle Leota, ASCC
Fonoti Simanu, (NMSASAC Faimalie Peresesa, Futiga Brian Peck, USFWS Rose Atoll
Aunu’u Island) Mayor Manager
Togiola Tulafono, (NMSASAC Valory Gregg, Atlantic Pacific Puataunofo Tulafono, Boy and
East Tutuila) Marine (NMSASAC West Tutuila) Girls Club
Table of Contents

Executive Summary .. i

Chapter 1 An Overview of Climate Change in American Samoa ... 1
Overview and Background... 1
 Office of National Marine Sanctuaries Perspective... 1
 American Samoa.. 1
 Fa‘a-Samoa - The Samoan Way... 1
 Preparing for Climate Change... 2
Climate Change Impacts in American Samoa... 3
 Air Temperature... 4
 Annual and Seasonal Precipitation.. 5
 Drought.. 6
 Extreme Precipitation and Tropical Cyclones ... 6
 Streamflow... 6
 Sea Level Rise ... 7
 Wave Height.. 8
 Sea Surface Temperature... 8
 Ocean Acidification... 9

Chapter 2 Vulnerability Assessment and Adaptation Planning: Methods and Workshop
Activities... 10
Overview.. 10
STEP 1: Identify Conservation Targets - Focal Resource Selection 11
STEP 2: Vulnerability Assessment Workshop and Methods ... 11
 Vulnerability Terminology and Definitions... 12
 Habitat Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity 12
 Species Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity.... 13
 Ecosystem Service Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity 15
 Vulnerability Assessment Workshop Activities.. 15
STEP 3: Adaptation Planning Workshop and Methods.. 16
 Adaptation Terminology and Definitions.. 17
 Adaptation Strategy Workshop Activities... 17
 Current Management Goals and Potential Vulnerabilities.. 18
 Future Management Goals and Adaptation Actions.. 18
 Adaptation Action Feasibility... 18

Chapter 3 Vulnerability Assessment and Adaptation Planning Results 19
Summary.. 19
1. Coral Reef Habitat.. 20
 Introduction... 20
 Vulnerability Assessment Results.. 20
 Current Management Actions... 21
 Future Management Actions... 21
 Feasibility and Effectiveness of Current and Future Management Actions.................. 22
2. Mangroves and Lagoon Habitat... 22
 Introduction... 22
 Vulnerability Assessment Results.. 23
 Current Management Actions... 23
 Future Management Actions... 23
List of Figures
Figure 1. Map of the Pacific Islands sub-regions (left) and American Samoa (right) (Finucane et al. 2012; US DOC NOAA ONMS 2012). ...4
Figure 2. Adaptation planning process (Glick et al. 2011). ..10
Figure 3. Visual representation of the vulnerability assessment process.12
Figure 4. Visual representation of the relationship between adaptation goals, strategies, and specific actions. ...17
Figure 5. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Coral Reefs. ...22
Figure 6. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Mangroves. ..24
Figure 7. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Water Quality. ..26
Figure 8. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Giant Clams. ...28
Figure 9. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Reef fish. ...31
Figure 10. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Sharks and Rays. ...33
Figure 11. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Sea Turtles...35

List of Tables
Table 1. Current management goals, potential vulnerabilities, and current management actions for coral reefs. ...55
Table 2. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for coral reefs. ..63
Table 3. Current management goals, potential vulnerabilities, and current management actions for mangroves and Pala Lagoon. ...69
Table 4. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for mangroves and Pala Lagoon. ..70
Table 5. Current management goals, potential vulnerabilities, and current management actions for water quality. ..72
Table 6. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for water quality. ..74
Table 7. Current management goals, potential vulnerabilities, and current management actions for giant clams. ..75
Table 8. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for giant clams. ..76

Table 9. Current management goals, potential vulnerabilities, and current management actions for reef fish. ..77

Table 10. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for reef fish..79

Table 11. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for sharks and rays. ..80

Table 12. Current management goals, potential vulnerabilities, and current management actions for sea turtles. ..81

Table 13. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for sea turtles. ..84
Executive Summary

The ocean systems and the interdependent lives and economies that are protected by the National Marine Sanctuary of American Samoa are affected by diverse and compounding anthropogenic factors. These range from marine debris and pollution, to human development and fishing practices, to climate change and ocean acidification. Sanctuary planning and management help to ensure that the natural systems on which marine, wildlife and human communities depend are healthy and sustainable for generations to come despite these far-reaching stressors. For emerging threats such as climate change and ocean acidification, marine and coastal resource managers often recognize the threats climate change poses to the resilience, health, and ecosystem services of the special coastal and ocean places they protect, yet are still struggling with how to develop appropriate management options.

This report summarizes the results of a rapid vulnerability assessment (July 2016) and adaptation strategy planning (September 2016) workshops for 10 focal resources in the Territory and National Marine Sanctuary of American Samoa by engaging with stakeholders, including village leaders, community members, resource managers, local government representatives, and business owners that rely on the resources with the goal of increasing climate resilience in the region.

Vulnerability Assessment Results

Rankings for each vulnerability component (i.e., sensitivity, exposure, adaptive capacity) were combined into an overall vulnerability score. The table below depicts the results of the vulnerability of the ten focal resources over the next 20 years\(^1\) as well as confidence scores. Overall the vulnerability assessment of the 10 focal resources was moderate to low-moderate with mostly high and moderate confidence scores. This is likely due to the 20-year timeframe that participants chose to use rather than a more standard long-term timeframe of 50-100 years. If the standard climate change timeframe would have been used for this vulnerability assessment, one would have probably expected higher vulnerability and lower confidence scores.

<table>
<thead>
<tr>
<th>FOCAL RESOURCE</th>
<th>VULNERABILITY</th>
<th>CONFIDENCE SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral Reef Habitat</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Mangrove Habitat</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Giant Clam</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Herbivore Reef Fish</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Charismatic Reef Fish</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Reef Piscivores</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Pelagic Fish</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Sharks and Rays</td>
<td>Low-Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sea Turtles</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

\(^1\) Participants identified a 20-year timeframe under which to assess the resources’ vulnerability. A longer timeframe would have yielded much lower confidence scores for the rankings, and participants wanted to provide
Adaptation Strategy Development Results

For each resource, participants generated a list of adaptation strategies and actions. The table below presents the top ranked current and future climate-informed recommended actions.

<table>
<thead>
<tr>
<th>RESOURCE</th>
<th>CLIMATE-INFORMED ACTIONS</th>
</tr>
</thead>
</table>
| Coral Reef Habitat | • Support sewer upgrades and expansions, new wastewater treatment plants, proper septic tank installation, and cesspool removal
| | • Plant more trees/vegetation in coastal areas and in villages to reduce runoff
| | • Select corals that are resilient to bleaching for restoration projects
| Mangroves | • Increase use of stream catchments to catch debris
| Water Quality | • Improve sewage effluent quality and sewage treatment (secondary treatment and UV lights)
| | • Increase public education and outreach
| | • Pass and enforce anti-littering bill (Keep American Samoa Beautiful Act)
| | • Find alternatives to untreated/disposable pollutants
| Giant Clam | • Create hatchery for clam stocking and genetic study of giant clams between different islands to diversify seed source
| | • Increase public education and outreach
| | • Enforce and develop new harvest regulations to avoid overharvesting
| Reef Fish | • Utilize fishing regulations and ensure enforcement
| Sharks & Rays | • Increase research to identify breeding/rearing critical habitat
| Sea Turtles | • Engage village councils to enforce laws
| | • Monitor turtles/eggs; satellite tagging to track migration routes
| | • Create citizen science program to track turtle/nest presence
| | • Increase education (importance of beaches and light use)
| | • Use turtle-friendly street lights |
Chapter 1 An Overview of Climate Change in American Samoa

Overview and Background

Office of National Marine Sanctuaries Perspective
The Office of National Marine Sanctuaries serves as the trustee for a network of underwater parks encompassing more than 600,000 square miles (1,553,993 sq. km.) of marine and Great Lakes waters from Washington State to the Florida Keys, and from Lake Huron to American Samoa. The network includes a system of 13 national marine sanctuaries and Papahānaumokuākea Marine National Monument. National marine sanctuaries operate at the heart of coastal communities where local marine resources provide jobs, recreational opportunities and a sense of identity. Each sanctuary works closely with its local, state and federal level stakeholders in managing the site to create a shared vision that integrates human uses with the primary mandate of resource protection.

National marine sanctuaries play a significant role in understanding the influence of climate change. While climate change threatens marine resources and the communities that rely on them, national marine sanctuaries are working with partners to educate the public and to systematically integrate climate change in management and day-to-day operations. In addition, sanctuaries provide coastal communities with natural defenses against climate change impacts. They protect and restore critical blue carbon habitats, such as salt marshes, mangroves and seagrass beds, that help mitigate climate change by capturing and storing carbon from the atmosphere. By being on the frontline, sanctuaries are ideal places to focus climate research and monitoring and to find practical ways to build resilience to climate change.

American Samoa
American Samoa is an unincorporated territory of the United States consisting of the eastern part of the Samoan archipelago, located in the south-central Pacific Ocean. It lies about 1,600 miles (2,600 km) northeast of New Zealand and 2,200 miles (3,500 km) southwest of the U.S. state of Hawai´i.

American Samoa includes the inhabited islands of Tutuila, Manu´a islands (Ta´u, Olosega, Ofu), and Aunu´u, along with an uninhabited coral atoll named Rose Island. Swains Island, a formerly inhabited coral atoll, about 280 miles (450 km) northwest of Tutuila and physiographically separate from the archipelago, was made a part of American Samoa in 1925. The capital of American Samoa is Pago Pago, on Tutuila.

The 2010 census showed a total population of 55,519 people. The total land area is 199 square kilometers (76.8 sq. mi), slightly more than Washington, D.C. American Samoa is the southernmost territory of the U.S. and one of two U.S. territories (with the uninhabited Jarvis Island) south of the Equator (US DOC NOAA ONMS 2012).

Fa´a-Samoan - The Samoan Way
While American Samoa is the place where the sanctuary is physically located, fa´a-Samoan is the cultural context for all sanctuary activities. Fa´a-Samoan is the traditional communal Samoan
lifestyle, or way of life. It is the foundation of Polynesia's oldest culture - dating back some 3,000 years. It places great importance on the dignity and achievements of the group rather than on individual achievements. The traditional communal lifestyle revolves around the aiga, or extended family. Aiga are headed by leading matai (chief) or Sa’a, who manage the communal economy, protect and distribute family lands, are responsible for the welfare of all in their aiga, and represent the family in councils. Even after decades of foreign influence, most Samoans are fluent in their native language, but also speak English.

The sanctuary team places a high value on partnerships with communities and maintains great respect for fa’a-Samoa. In American Samoa, the sanctuary-matai relationship is critical to the success of this partnership. The American Samoa Office of Samoan Affairs helps facilitate the sanctuary’s community consultations in a manner that is culturally appropriate and respectful of fa’a-Samoa. This work includes consultations with saofa’aiga ale nuu (village council meeting) and individual matai (US DOC NOAA ONMS 2012).

Preparing for Climate Change

Islands in the Pacific region are among the most vulnerable areas in the world to impacts from climate change (Mimura et al. 2007). Given American Samoa’s isolation, limited land area, and vulnerability to extreme weather events and coastal hazards, there is a critical need to prepare communities for environmental changes such as impacts from climate change. Due to the traditional land tenure system in American Samoa, where land is tied to chiefly, or matai, titles and not controlled by the government, it is necessary to engage the chiefs at the village level in order to create an effective resilience plan. The need to “integrate plans at the village level” was noted in the 2012 American Samoa Capacity Assessment (Page et al. 2012). In addition, the NOAA Coral Reef Conservation Program noted that there is a need to “Identify, understand, and communicate risks and vulnerability of US coral reef ecosystems, ecosystem services, and dependent human communities to climate change and ocean acidification” in its 2009 report entitled “NOAA Coral Reef Conservation Program Goals and Objectives 2010-2015.” Despite these needs, little local planning and resource vulnerability assessments have been conducted to date.

Local climate change actions taken thus far include:

1) The Coral Reef Advisory Group (CRAG) was created in American Samoa in 1994 by three founding agencies (American Samoa Environmental Protection Agency, Department of Commerce and Department of Marine and Wildlife Resources) with two additional groups (National Park of American Samoa and the American Samoa Community College’s Marine Science Program) joining in 2000. The CRAG identified four threats as “most devastating” to coral reefs in American Samoa—over-fishing, population growth, development pressure/unmanaged land use, and climate change. Local research was supported to explore these threats, including climate change, with territorial and federal funds, and workshops were held to build agency capacity on these issues, while working to develop response strategies.

2) In 2007 then Governor Tulafono signed an executive order entitled, “Climate Change Mitigation Executive Order,” which mandated that the American Samoa Government (ASG) would make efforts to reduce its carbon footprint through such actions as: Increased minimum fuel efficiency for ASG vehicles; no longer buying 4-wheel drive vehicles unless needed; increase
the number of hybrid vehicles by 5% until 50% of new ASG vehicles are hybrid in 2017; banning
the importation of vehicles made before 1999; require gas stations to install vapor recovery
nozzles; use compact florescent bulbs, encouraging all ASG departments to set up a recycling
program, purchasing only energy star appliances, and it banned the import of high phosphorus
detergents to reduce nutrification in nearshore waters.

3) Several high level climate change workshops were held in American Samoa after the 2007
Executive Order, including one in April, 2010 entitled, “Planning for Climate Change in the
Coastal and Marine Environment,” and another in February, 2010 entitled, “Making Climate
Change Local: Building Resilient Communities in the Pacific.” Both of these workshops were in
whole or part sponsored and organized by the then Fagatele Bay National Marine Sanctuary
(now National Marine Sanctuary of American Samoa).

4) An ASG mandated Territorial Climate Change Adaptation Working Group was created in June,
2011.

5) In August of 2012, then Governor Tualafono signed an updated executive order (EO-03-2012)
acknowledging and reaffirming the serious nature of the impacts of climate change to American
Samoa, and even specifically noting the actions were taken from the recommendations of the
“Making Climate Change Local: Building Resilient Communities in the Pacific” workshop. This
executive order proposed to: ban import of vehicles older than ten years, requiring all newly
purchased ASG vehicles to be hybrids, requiring all newly purchased ASG appliances to be
Energy Star, banning the importation of any detergents containing phosphates, prohibiting the
use of incandescent light bulbs and requiring new lighting to use light-emitting diode (LED)
bulbs, or compact fluorescent bulbs if LEDs aren’t an option, and requires all ASG departments
to create their own recycling program.

6) A Territorial Climate Change Adaptation Framework and a Community Climate Change
Resiliency Guide was created in August of 2012.

7) In 2012 air-born LiDAR-Light Detection and Ranging—a remote sensing method used to
examine the surface of the Earth, was flown over the island of Tutuila; this critical data set is
being used to develop sea level rise models for local villages.

8) In 2012, the village of Amouli created a village resiliency plan, as outlined in the resiliency
guide. This was a result of a project driven by Co-Principle Investigators Dr. Arielle Levine and
Fatima Saufae Le’au, with technical assistance from Dr. Chip Fletcher.

9) In 2012, the Fagatele Bay National Marine Sanctuary Final Management Plan / Final
Environmental Impact Statement, that included a Climate Change Action Plan, were completed
(US DOC NOAA ONMS 2012).

Climate Change Impacts in American Samoa
American Samoa climate is characterized by warm, relatively stable air temperatures, variable
precipitation, high humidity, persistent southeast trade winds, and periodic tropical cyclone
activity (US DOC NOAA ONMS 2012). Rainfall and trade winds in American Samoa are
influenced by the South Pacific Convergence Zone, a low-pressure area which seasonally moves
over and around the archipelago, resulting in a long rainy season from October-May, and a
slightly cooler and drier period from June-September with higher southeasterly trade wind
activity (Finucane et al. 2012; US DOC NOAA ONMS 2012). Tropical cyclone activities bring
heavy rainfall and high wave activity, with peak cyclone activity occurring from December to February (Finucane et al. 2012).

Figure 1. Map of the Pacific Islands sub-regions (left) and American Samoa (right) (Finucane et al. 2012; US DOC NOAA ONMS 2012).

The Pacific Islands region experiences high inter-annual and inter-decadal climate variability as a result of the El Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Inter-decadal Pacific Oscillation (IPO) (Finucane et al. 2012; US DOC NOAA ONMS 2012; Cheng and Gaskin 2011). ENSO events – including La Niña (cold phase) and El Niño (warm phase) – influence a variety of regional climate factors, including trade wind activity, rainfall, storm tracks, and ocean temperature (Finucane et al. 2012; US DOC NOAA ONMS 2012). These events typically persist for 6-18 months and ENSO phase shifts occur every 3-7 years (Cane 2005). The PDO has similar effects because its warm and cold phases alter the relative dominance of El Niño and La Niña events. PDO phases typically cycle every 20-30 years (D’Aleo 2005), and it is believed that the Pacific Islands region has been in a cold PDO phase since 1999; this phase will likely persist for the next several decades. The IPO behaves similarly to the PDO, affecting the broader south Pacific, where American Samoa is located (Finucane et al. 2012).

Where possible, climate information specific to American Samoa is presented. In the absence of specific information for American Samoa, climate trends and projections for Samoa, the Central South Pacific, or the Pacific Islands region as a whole are presented.

Air Temperature
In nearby Samoa, average annual, minimum, and maximum air increased significantly from 1950-2009 (+0.25°F (+0.14°C), +0.07°F (+0.04°C), and +0.4°F (0.22°C) per decade, respectively), with the largest increases in maximum air temperatures (Young 2007; ABM and CSIRO 2011). Air temperatures are projected to continue increasing over the next century in the Central South Pacific (Young 2007; ABM and CSIRO 2011). Relative to temperatures from 1971-2000, average annual surface temperatures are projected to increase +1.1-1.3°F (+0.61-0.72°C) by 2030, +1.9-2.5°F (+1.06-1.39°C) by 2050, and +2.5-4.8 °F by 2090 (+1.39-2.67°C) (ABM and
CSIRO 2011). Additionally, extreme heat days are projected become more frequent and intense across the Pacific Islands region during the 21st century (Finucane et al. 2012).

Potential impacts of air temperature increases on American Samoa’s marine and coastal resources include increased mangrove heat stress and altered mangrove forest species composition, distribution, growth rates, and phenology, altered tidal flat community composition, distribution, and productivity, increased evaporation, exacerbating drought stress, altered bird migration timing, and shifts in sea turtle hatchling sex ratios (more females) (Parker and Miller 2012; Leong et al. 2014).

Annual and Seasonal Precipitation
There are few stable precipitation monitoring records for American Samoa, but from what data are available, American Samoa has shown no significant trend in annual precipitation or winter one-day precipitation volume since 1965 (Leong et al. 2014). Similarly, annual and seasonal rainfall trends in Samoa showed no significant trends from 1950-2009 (ABM and CSIRO 2011). Future precipitation projections for the Central South Pacific are highly variable and display conflicting results (Young 2007; ABM and CSIRO 2011). However, future conditions may include no change to a slight increase in mean annual precipitation during the 21st century, with slight precipitation decreases during the dry season and slight precipitation increases during the wet season (ABM and CSIRO 2011; Keener et al. 2012).

Precipitation patterns are influenced by a variety of factors in addition to climate change, including shifts in ENSO, PDO, and IPO phases, and according to local topography and location on a given island (Finucane et al. 2012, Leong at al. 2014). For example, El Niño conditions can cause heavy rainfall or drought depending on event strength and island location (Finucane et al. 2012). A summary of general phase effects on rainfall and tropical cyclone activity are listed below.

Summary of phase event influences on precipitation and tropical cyclone activity in American Samoa (ABM and CSIRO 2011):
- **El Niño:**
 - Weak: reduced rainfall and tropical cyclone activity
 - Moderate: enhanced rainfall and tropical cyclone activity, extended rainy season
 - Strong: reduced rainfall
- **La Niña:**
 - Increased tropical cyclone activity and rainfall
- **PDO/IPO:**
 - Warm phases: generally increase El Niño activity
 - Cold phases: generally increase La Niña activity

Potential impacts of altered precipitation patterns on American Samoa’s marine and coastal resources include: altered freshwater runoff magnitude and timing to coastal and nearshore environments (e.g., lagoons, reef adjacent bays), altering pollutant, sediment, and nutrient delivery and altered ocean salinity and stratification (Cheng and Gaskin 2011; Finucane et al. 2012; Parker 2012; Leong et al. 2014).
Drought
Drought events in Samoa are correlated with El Niño events, but drought frequency has not changed over the past 60 years in Samoa (Young 2007; ABM and CSIRO 2011) or American Samoa (Keener et al. 2012). Drought frequency in Samoa is unlikely to exhibit major change during the 21st century, but there is low confidence in this projection due to poor modeling of dry season precipitation patterns in the region (Young 2007).

Potential drought impacts on American Samoa’s marine and coastal resources are reduced freshwater resources, particularly if drought is combined with enhanced saltwater intrusion and sea level rise, and the potential for decreased tourism (ABM and CSIRO 2011; Cheng and Gaskin 2011; Finucane et al. 2012; Parker 2012; Leong et al. 2014).

Extreme Precipitation and Tropical Cyclones
The Central South Pacific has shown no increase in the frequency of extreme rainfall events since 1965 (Keener et al. 2012). However, tropical cyclones are the primary source of extreme precipitation in the Central South Pacific, and the proportion of tropical storms escalating into tropical cyclones increased from 1991-2010 relative to 1970-1990 (Parker 2012). Extreme rainfall events are likely to increase in frequency and intensity during the 21st century, and will likely continue to be correlated with tropical cyclone activity (Young 2007; ABM and CSIRO 2011). Although region-specific projections are highly uncertain (Keener et al. 2012), tropical cyclone intensity across the Pacific Islands is projected to increase over the next 70 years (Diamond 2012), even while overall cyclone activity may decline in the Central South Pacific as storm tracks shift toward the Central North Pacific (ABM and CSIRO 2011; Seneviratne et al. 2012). In addition to responding to sea surface and atmospheric temperatures, cyclone activity is also correlated with ENSO, PDO, and IPO phase shifts, making future projections difficult (Keener et al. 2012).

More frequent and intense extreme precipitation events and more intense tropical cyclones can have a variety of impacts on American Samoa’s marine and coastal resources, including 1) increased erosion, sedimentation, and pollution runoff during extreme precipitation events, reducing water quality and promoting algal blooms in mangrove and coral reef systems; 2) increased nutrient runoff and crown-of-thorns starfish outbreaks following storms; 3) increased risk of waterborne diseases; 4) altered geomorphology of mangroves forests, coral reefs, and seagrass beds, reducing critical habitat and protection for coastal communities; and increased coastal erosion, potentially affecting important cultural resources, nesting sea turtles, and tourism (Parker 2012; Leong et al. 2014; Cheng and Gaskin 2011; Finucane et al. 2012).

Streamflow
There is very little long-term, reliable streamflow data for American Samoa, but the limited data available from Tutuila indicate no significant trend in total streamflow, baseflow, or the number of extreme low- or high-flow days over a period of 35 years (1960-1995) (Keener et al. 2012). There are no concrete projections for streamflow in American Samoa, although streamflows are likely to be influenced by shifts in regional precipitation. Natural flow regimes are also influenced by human infrastructure and use (Keener et al. 2012).
Potential impacts of altered streamflows on American Samoa’s marine and coastal resources include possibly reduced streamflow or increased streamflow dependent on precipitation events and drought events. Reduced streamflow can result in reduced nutrient delivery to nearshore and coastal ecosystems and reduced tourism opportunities by limiting freshwater availability. Increased streamflow can result in increased sedimentation and pollutant and nutrient delivery to nearshore ecosystems influencing tourism (Kenner et al. 2012; Parker 2012; Leong et al. 2014).

Sea Level Rise
Global sea levels have risen over the past century, although exact magnitude estimates vary (Cheng and Gaskin 2011; Yu and Hamilton 2010). Recent estimates indicate that global sea levels increased 3.4 (+/- 0.4 mm) per year from 1993-2009, representing a much faster rate of rise than during the 20th century (Emanuel 2005). Mean sea level rise was +2.07 mm per year from 1948-2006 in American Samoa, but exhibited annual variability (Cheng and Gaskin 2011).

There are no concrete projections for sea level rise in American Samoa (Cheng and Gaskin 2011). However, the Pacific Islands region will likely experience similar rates of sea level rise as global averages, with a potential increase between 0.2 to 2 m by 2100 depending on greenhouse gas emission scenarios and rates of ice sheet loss (Marra et al. 2012). Mirroring increases in mean sea level, the Pacific Islands region will likely experience an increased frequency of extreme sea level events. Based on past trends observed at Pago Pago, extreme sea level events will likely be driven by high tides (Marra et al. 2012) and extreme weather (e.g., cyclones).

Additionally, local rates of sea level rise will likely vary according to land dynamics (subsidence, uplifting), phase changes of ENSO and the PDO, wind patterns, and storm activity. For example, some communities in American Samoa (e.g., Pago Pago) may be subsiding, which will increase relative local rates of sea level rise (Li et al. 2010). Energetic ENSO phases can raise local sea levels by 6-12 inches (15-31 cm), and storm winds can raise water levels several inches to multiple feet (Keener et al. 2012). Additionally, shifts in trade wind activity can alter relative rates of sea level rise, and are thought to have contributed to the higher rates of sea level rise in the western Pacific relative to global trends from 1993-2010 (Nerem et al. 2010; Cheng and Gaskin 2011; Marra et al. 2012).

Potential impacts of sea level rise and extreme sea level events on American Samoa’s marine and coastal resources include:

- Altered distribution and availability of coastal and nearshore habitats due to altered inundation timing and erosion, including sandy beaches, shallow coral reefs, seagrass beds, intertidal flats, and mangrove forests (Cheng and Gaskin 2011; Finucane et al. 2012; Leong 2014)
- Enhanced flooding and erosion of low-lying coastal areas, potentially affecting recreation, tourism, and important cultural resources (Parker and Miller 2012)
- Reduced mangrove forest extent and associated nursery habitat and ecosystem services (coastal protection, water purification) (Parker and Miller 2012; Leong et al. 2012)
• Reduced seabird breeding and sea turtle nesting habitat (Parker and Miller 2012; Leong et al. 2012)
• Enhanced saltwater intrusion in aquifers and groundwater storage areas, particularly on lower islands (Parker and Miller 2012; Leong et al. 2012)
• Increased salinity in freshwater and brackish wetlands (Parker and Miller 2012; Leong et al. 2012)
• Reduced upward coral growth (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong 2014)
• Enhanced erosion and re-suspension of seabed sediment, increasing sedimentation and turbidity among reefs (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong 2014)

Wave Height
Few long-term records of wave height exist for the Pacific Islands region (Young et al. 2011; Seneviratne et al. 2012). Future wave conditions are difficult to project due to the uncertainty underlying future storm patterns in a changing climate (Marra et al. 2012), but within the Pacific Islands region, annual mean wave heights are projected to increase in the southern tropical Pacific, and decrease in other Pacific areas (Hermer et al. 2010).

Potential impacts of shifting wave heights on American Samoa’s coastal and marine resources include altered coral distribution, increased coral erosion, changes reef growth patterns, and increased coastal erosion (Parker and Miller 2012; Leong et al. 2014).

Sea Surface Temperature
Since the 1970s, sea surface temperatures in the Pacific Islands region have increased +0.13-0.41°F (+0.07-0.23°C) per decade depending on location (ABM and CSIRO 2011). American Samoa has also exhibited warming trends (although exact rates aren’t available) and Samoa exhibited a temperature increase of +0.14°F (+0.08°C) per decade from 1970-2011 (ABM and CSIRO 2011; US DOC NOAA ONMS 2012). Sea surface temperature in the Pacific Islands region is projected to continue increasing over the next century, potentially increasing +1.1-1.7°F (+0.61-0.94°C) by 2030, +1.8-2.3°F (+1.0-1.28°C) by 2055, and +2.5-4.7°F (+1.39-2.61°C) by 2090, depending on emissions trajectories and phase changes of ENSO, the PDO, and the IPO (ABM and CSIRO 2011; Finucane et al. 2012; Marra et al. 2012).

Potential impacts of increased sea surface temperatures on American Samoa’s coastal and marine resources include the following:
 • More frequent and intense coral bleaching events (e.g., annual summer bleach events) and increased susceptibility to future bleaching episodes (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong at al. 2014);
 • Increased coral mortality (larval and adult stages) and disease incidence (e.g., coral bleaching) (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong et al. 2014);
 • Suppressed coral reef reproduction and altered population connectivity, potentially undermining recovery from bleaching events (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong et al. 2014);
• Potential shifts in coral distribution (e.g., shift toward deeper locations and areas with high water flow to ameliorate thermal stress) (Cheng and Gaskin 2011; Finucane et al. 2012; US DOC NOAA ONMS 2012; Leong et al. 2014);
• Altered distribution and reduced diversity, recruitment, and abundance of reef fishes;
• Increased reef fish disease vulnerability via suppressed immune system function (Cheng and Gaskin 2011; Finucane et al. 2012)
• Altered invertebrate larval development and transport (Cheng and Gaskin 2011; Finucane et al. 2012);
• Loss of ecosystem services provided by coral reefs (e.g., subsistence and commercial fisheries, tourism, coastal protection) (Leong et al. 2014);
• Range expansions of warm-water species (Parker and Miller 2012);
• Decline of seagrass systems, including shifts in species distribution, sexual reproduction, carbon dynamics, and growth rates (Cheng and Gaskin 2012; Leong et al. 2014);
• Decline of mangrove systems (Cheng and Gaskin 2012; Leong et al. 2014);
• Altered oceanic species distribution (including adults and larvae) and composition, potentially affecting fisheries (stock abundance and access) (Leong et al. 2014);
• Altered stratification, resulting in shifts in photic zone nutrient availability and phytoplankton size, abundance, and diversity, contributing oceanic food web shifts (Leong et al. 2014);
• Increased dominance of dinoflagellates over other phytoplankton and potential increase in toxic and non-toxic dinoflagellate blooms (Leong et al. 2014); and

Ocean Acidification
Ocean acidification has been progressing across the Pacific Islands region over the past several centuries, and according to estimates for the Samoa region the aragonite saturation state in the late 18th century was 4.5, whereas it was measured at 4.1 in 2000 (ABM & CSIRO 2011). Coral formation occurs optimally at saturation states above 4.0, declining to extremely marginal production at levels at and below 3.0 (US DOC NOAA ONMS 2012). Regional ocean waters are projected to become more acidic in the future, and the aragonite saturation state is projected to fall below 3.5 in the region by 2060, and continue declining thereafter (ABM & CSIRO 2011).

Potential impacts of ocean acidification on American Samoa’s coastal and marine resources include: reduced calcification in corals, crustaceans, mollusks, echinoderms, and other taxa, reduced coral formation, growth, diversity, abundance, health, and recruitment, shifts in competitive interactions amongst coral taxa, altering reef complexity, increased macroalgae (fleshy algae) growth, altered oceanic species distribution as phytoplankton productivity and distribution changes, potentially affecting fisheries, and reduced coastal protection from wave energy and overwash if reef structures decline (Cheng et al. 2011; Parker and Miller 2012; Leong et al. 2014).
Chapter 2 Vulnerability Assessment and Adaptation Planning: Methods and Workshop Activities

Overview
Climate change vulnerability assessments provide two kinds of information: (1) they identify which resources are likely to be most affected by changing climate conditions, and (2) they improve understanding as to why these resources are likely to be vulnerable. Knowing which resources are most vulnerable better enables managers to develop adaptation strategies and set priorities for conservation action (Glick et al. 2011).

This vulnerability assessment and adaptation strategy report is an initial science-based effort to identify how and why focal resources (habitats, species, and ecosystem services) across the American Samoa are likely to be affected by future climate conditions over the next 20 years and what are some strategies and options for reducing those vulnerabilities. This report includes the results of two workshops to assess Step 1 through Step 3 of the Adaptation Planning Process (see Figure 2). Step 1 included the identification of conservation efforts for 10 focal resources, Step 2 included the assessment of the vulnerability of those focal resources, and Step 3 included the identification of management options to reduce those vulnerabilities that were identified in Step 2.

Developing resilient management options to decrease vulnerabilities requires implementing a variety of adaptation options. Most adaptation options fall into the following five main categories:

1. **Enhance Resistance.** Implementation of these strategies can help to prevent the effects of climate change from reaching or affecting a resource. Common resistance actions include those designed to reduce non-climate stressors.

2. **Promote Resilience.** These strategies can help a resource withstand the impacts of climate change by avoiding the effects of or recovering from changes.

Figure 2. Adaptation planning process (Glick et al. 2011).
3. **Facilitate Transition (or Response).** Transition or response strategies intentionally accommodate change and enable resources to adaptively respond to changing and new conditions.

4. **Increase Knowledge.** These strategies are aimed at gathering more information about climate changes, impacts, and/or the effectiveness of management actions in addressing the challenges of climate change.

5. **Engage Coordination.** Coordination strategies may help align budgets and priorities for programs of work across lands or establish or expand collaborative monitoring efforts or projects, among others.

STEP 1: Identify Conservation Targets - Focal Resource Selection

A total of **10 focal resources** were selected from a list of 6 habitats, 12 species, and 3 ecosystem services valued in American Samoa. Sanctuary staff, village leaders, advisory council members, scientists, and managers were asked eight questions to select the resources most impacted by climate change with a survey. The questions for considerations when picking the focal resources included:

1. Is the resource listed as threatened, endangered or sensitive?
2. Is the resource considered to be ecologically foundational, a dominant species, an ecosystem engineer, a keystone species, an umbrella species, an important indicator, or strong interactors?
3. Does the resource have substantial or significant management implications?
4. Does the resource have significant other stressors already affecting viability?
5. Does the resource have available data and information upon which to do the vulnerability assessment?
6. Is the resource considered to be controversial or rare?
7. Does the resource have socio-economic significance (for example, is it a flagship species or does it have cultural or economic value)?
8. Is the resource likely to be significantly impacted by climate change?

The final focal resources selected included 2 combined habitats, coral reef habitat (reef flat, reef crest, reef slope, mesophotic reefs) and mangrove/lagoon habitat; 7 species assemblages, charismatic fish, herbivorous fish, piscivorous fish, pelagic fish, sharks and rays, giant clams, and sea turtles; and 1 ecosystem service, water quality.

STEP 2: Vulnerability Assessment Workshop and Methods

The vulnerability assessment comprises three components: 1) sensitivity, 2) adaptive capacity, and 3) exposure, for focal resources, which are averaged by rankings for those components, and confidence scores for those rankings. The sensitivity, adaptive capacity, and exposure components each include multiple finer resolution elements that were addressed individually. **Sensitivity** involves factors that currently shape species, habitat, or ecosystem service to climate and climate driven factors (e.g., air and sea temperature, precipitation, drought, tropical storms, streamflow, coastal erosion, ENSO), sensitivity to disturbance regimes (e.g., disease, crown-of-thorns starfish), and sensitivity to non-climate stressors (e.g., land use change, overfishing, nutrient loading). **Adaptive capacity** elements include extent, status, and
dispersal ability; species life history diversity, genetic diversity, behavioral plasticity, and phenotypic plasticity; species ability to resist and recover from stressors; and species management potential. To assess exposure, participants were asked to identify the climate and climate-driven changes most relevant to consider for the species, habitats, and ecosystem services and to evaluate how they would experience to those changes. A climate change trends and projections table was provided to participants to facilitate this evaluation (See Appendix III).

Vulnerability Terminology and Definitions:

1. **Vulnerability**: A function of the sensitivity of a particular resource to changes in climate changes, its exposure to those changes, and its capacity to adapt to those changes (IPCC 2007).
2. **Sensitivity**: The climate and climate-driven factors that currently shape the species, habitat or ecosystem services.
3. **Exposure**: Consideration of future changes in climate that could affect the species, habitat, or ecosystem service.
4. **Adaptive Capacity**: The ability of an individual, community, or ecosystem to respond or adapt to change; this reflects intrinsic traits (e.g., behavioral or physiological flexibility that allows individuals to respond to new situations) and extrinsic factors (e.g., degree of habitat fragmentation, management potential).

Figure 3. Visual representation of the vulnerability assessment process.

Habitat Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity

1. **Climate and Climate Drive Factors**: There are two ways to assess habitat sensitivity:
 a. whether habitat exists in a relatively narrow zone, and thus being more sensitive, or exists in a relatively broad climatic zone, thus being less sensitive;
 b. whether the habitat experiences large changes in composition or structure due to small changes in climate or climate-driven factors, and thus is more sensitive; or the habitat experiences small changes even with larger changes in climate or climate-driven factors, and this is less sensitive.
2. **Disturbance Regimes**: Natural disturbance regime is a concept that describes the pattern of disturbances that shape an ecosystem over a long time scale. It is distinguished from a single disturbance event because it describes a spatial disturbance
pattern, frequency and intensity of disturbances, and a resulting ecological pattern over space and time. More sensitive habitats will show larger changes in composition or structure in response to relatively small climate-driven changes in disturbance regimes. Conversely, it would take much larger climate-driven changes in disturbance regimes to elicit a substantial change in composition or structure in less sensitive habitats. Changes in disturbance regimes may be either good or bad for the habitat.

3. **Future Climate Exposure**: Exposure involves future climate changes that could affect the habitat and the likely degree of exposure to those changes, including increased air and sea temperatures, decreased pH, altered currents, and storms.

4. **Sensitivity and Current Exposure to Non-Climate Stressors**: Sensitivity of the habitat to climate change impacts may be highly influenced by the existence, extent of, and current exposure to non-climate stressors. Although a habitat may be sensitive to a non-climate stressor, if it is not currently exposed to it, the overall sensitivity of the habitat may be lower.

5. **Extent, Integrity, and Continuity**: Habitats that are currently widespread in their geographic extent, with high integrity and continuity may have greater adaptive capacity, may be more likely to withstand non-climate and climate stressors, and may persist into the future. Habitats that are degraded, isolated, limited in extent, or currently declining due to non-climate and climate stressors may have less adaptive capacity, and may be less likely to persist into the future.

6. **Resistance and Recovery**: Some habitats may be more resistant to changes, stressors, or maladaptive human responses, or are able to recover more quickly from stressors; these habitats likely exhibit higher adaptive capacity. This may include habitat diversity or diverse physical and topographical characteristics (e.g., variety in aspects), which may confer higher adaptive capacity.

7. **Management Potential**: Management potential reflects the ability to impact the adaptive capacity and resilience of a habitat to changes in climate through actions taken by the human community overseeing a habitat.

Species Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity

1. **Climate and Climate-Driven Factors**: Species sensitivity to climate and climate-driven factors may be direct (e.g., physiological, phenological) or indirect (e.g., ecological relationships).
 a. *Physiological sensitivity* refers to a species’ physiological ability to tolerate changes that are higher or lower than the range that they have experienced or currently experience. Species that are able to tolerate a wide range of climatic factors may be considered less sensitive.
 b. *Phenological sensitivity* refers to a species’ ability to phenologically track climate (e.g., timing of reoccurring thermal events). Species that cannot phenologically track environmental changes may be considered more sensitive.
 c. *Species’ ecological relationships* may also be affected by climate or climate-driven factors. Ecological relationships can include: predator/prey, foraging, competition, habitat, pollination, dispersal, symbiont/mutualist/parasite, and others. Ecological relationships significantly affected by small changes in climate and climate-driven factors may have higher sensitivity.
2. **Disturbance Regime**: Natural disturbance regime is a concept that describes the pattern of disturbances that shape an ecosystem over a long time scale; it is distinguished from a single disturbance event because it describes a spatial disturbance pattern, a frequency and intensity of disturbances, and a resulting ecological pattern over space and time. Species may be at greater risk of decline or elimination even in response to small changes in disturbance regimes. For example, increasing water temperatures can alter bleaching and disease patterns in coral reefs which may cause shifts from coral to algal dominated systems. Changes in disturbance regimes may be either good or bad for the species.

3. **Future Climate Exposure**: Climate exposure involves projected future changes in climate that could affect the species and the likelihood that a species will experience those changes, including increased air and sea temperature, decreased pH, altered currents, and storms.

4. **Dependencies**: Species that use multiple habitats or utilize multiple prey or forage species may be less sensitive to climate change (e.g., generalists). Conversely, species with very narrow habitat needs or habitat specialization, single prey or forage species, or dependence on another sensitive species may have a higher likelihood of decline if climate change significantly affects the habitat or species they are dependent upon (e.g., specialists).

5. **Sensitivity and Current Exposure to Non-Climate Stressors**: Sensitivity of the species to climate change impacts may be highly influenced by the existence, extent of, and current exposure to non-climate stressors. Although a species may be sensitive to a non-climate stressor, if it is not currently exposed to it, the overall sensitivity of the species may be lower.

6. **Extent, Status, and Dispersal Ability**: Species that are currently widespread in their geographic extent, with a robust population status, connectivity, and a high ability to disperse may have higher adaptive capacity. These species may be more likely to withstand and persist into the future despite climatic and non-climatic stressors. Species that are endemic, threatened or endangered, occur as isolated or fragmented populations, and/or exhibit limited ability to disperse may have lower adaptive capacity.

7. **Intraspecific/Life History Diversity**:
 a. Life history diversity: Species with a diversity of life history strategies (e.g., variations in age at maturity, reproductive or nursery habitat use, or resource use) may be more resilient to climate change.
 b. Genetic diversity: Species with characteristics such as faster generation times, genetic diversity, heritability of traits, larger population size, or multiple populations with connectivity among them to allow for gene flow may exhibit higher adaptive capacity.
 c. Phenotypic and behavioral plasticity: Species with the capacity to express different traits (e.g., phenology, behavior, physiology) in response to environmental variation may have higher adaptive capacity. For example, many species exhibit phenotype plasticity in response to inter-annual variation in temperature and precipitation.

8. **Resistance**: Some species may be more resistant to changes, stressors, or maladaptive human responses; these species may exhibit higher adaptive capacity.
9. **Management Potential**: Management potential reflects the ability to enhance the adaptive capacity and resilience of a species to changes in climatic through actions taken by the human community overseeing a resource.

Ecosystem Service Vulnerability Assessment Criteria: Sensitivity, Exposure, and Adaptive Capacity

1. **Sensitivity**: Involves factors that currently shape ecosystem services; exposure involves future climate changes that could affect the ecosystem service, and is covered in another section below. Ecosystem service sensitivity may largely be determined by the sensitivities of those components (e.g., species, habitat, hydrology, etc.) that provide or support the service. For example, the sensitivity of “marine fisheries” as an ecosystem service is significantly determined by the sensitivity of the target species climate and climate-driven factors (e.g., pH or temperature). Similarly, the sensitivity of recreation as an ecosystem service is dependent on the sensitivity of target species (e.g., birds for bird-watching) or habitat (e.g., beaches for sunbathing).

2. **Disturbance Regime**: Natural disturbance regime is a concept that describes the pattern of disturbances that shape an ecosystem over a long time scale; it is distinguished from a single disturbance event because it describes a spatial disturbance pattern, a frequency and intensity of disturbances, and a resulting ecological pattern over space and time. More sensitive ecosystem services may show significant changes in their ability to be provided in response to relatively small climate-driven changes in disturbance regimes (e.g., increased diseases in shellfish leading to harvest restrictions and/or closures).

3. **Future Climate Exposure**: Climate exposure involves projected future climate changes that could affect the service and the likely degree of exposure to those changes.

4. **Sensitivity and Current Exposure to Non-Climate Stressors**: Sensitivity of the service to climate change impacts may be highly influenced by the existence, extent of, and current exposure to non-climate stressors. Although a service may be sensitive to a non-climate stressor, if it is not currently exposed to it/affected by it, the overall sensitivity of the service will be lower.

5. **Intrinsic Value and Management Potential**: Intrinsic value considers societal value of the service, including whether or not people would be willing to change behavior to continue access to and condition of the service. Management potential reflects our ability to affect the adaptive capacity and resilience of an ecosystem service to climatic changes through actions taken by the human community overseeing an ecosystem service.

Vulnerability Assessment Workshop Activities

During the July 2016 workshop, participants were asked to evaluate the vulnerability for all 10 of the focal resources. The two-day workshop provided participants with baseline knowledge and understanding of climate trends (current, historic, projected future) for American Samoa.

2 http://ecoadapt.org/workshops/NMSAS-VA-workshop
and collectively assessed vulnerabilities of habitats, species, and ecosystem services to climate change including evaluating sensitivity, exposure, and adaptive capacity.

The vulnerability assessment model used in this process comprises three vulnerability components (i.e. sensitivity, adaptive capacity, and exposure), confidence evaluations for all components, and overall vulnerability and confidence for each focal resource. Sensitivity, exposure, and adaptive capacity components were broken down into specific elements better suited to assessing the vulnerability of particular resources for this assessment. Sensitivity elements for habitats and ecosystem services include: direct sensitivity to climate, climate-driven changes, and non-climate stressors. Disturbance regimes and non-climate stressors are also included in species sensitivity; however, several other elements are better suited to assessing species’ sensitivity including: generalist/specialist, physiology, life history, ecological relationships, and dependence on sensitive habitats.

During the workshop, participants assigned a ranking (1-low to 5-high) to each finer resolution element for sensitivity, exposure, and adaptive capacity, and provided a corresponding confidence score (e.g., 1-low to 3-high) to the ranking for all focal resources. These individual rankings and confidence scores were then averaged to generate rankings and confidence scores for each vulnerability component (i.e., sensitivity, adaptive capacity, exposure score). Results presented in a range (e.g., from moderate to high) reflect variability assessed by participants. Please note that participants felt that it was best to focus on future climate and climate-driven changes for over the next 20 years rather than 50-100 years because participants felt they needed more information to assess vulnerability over a longer timeframe.

Rankings for each vulnerability component (i.e., sensitivity, adaptive capacity, exposure) were then combined into an overall vulnerability score that was calculated as follows:

\[
\text{Vulnerability} = (\text{Climate Exposure} + \text{Climate Sensitivity}) - \text{(Adaptive Capacity)}
\]

STEP 3: Adaptation Planning Workshop and Methods
The adaptation strategy planning process consists of analysis of vulnerabilities of current management goals, strategies, and actions and an assessment on ways they can be more resilient and less vulnerable to climate and non-climate stressors. It also consisted of brainstorming new goals, strategies and actions that can help the resource become more resilient and less vulnerable to climate and non-climate stressors.
Figure 4. Visual representation of the relationship between adaptation goals, strategies, and specific actions.

Adaptation Terminology and Definitions

Adaptation Goal: A desired result for a given resource.

Adaptation strategy: General statements of how to reduce vulnerabilities or increase resilience of current management goals.

Adaptation actions: Specific activities that facilitate progress towards achieving an adaptation strategy.

Adaptation Strategy Workshop Activities

The September 2016 adaptation planning workshop\(^3\) goals were to develop climate-informed adaptation strategies and actions to conserve priority resources in the National Marine Sanctuary and Territory of American Samoa. Participants identified both current and future management goals for each of the focal resources. The purpose of identifying current management goals is to provide a foundation for evaluating whether and how climate change might affect the ability to achieve a given goal, and to develop options for reducing vulnerabilities through revised management activities. For each management goal, participants identified potential climate change vulnerabilities. This activity was followed by the evaluation of current management actions, including whether, in their current form, they can help to reduce identified vulnerabilities and/or how they can be modified to better address climate challenges. Following the evaluation of potential vulnerabilities of current management goals and actions, participants explored potential future management goals and adaptation strategies and identified more specific adaptation actions designed to reduce vulnerabilities or increase resilience of the selected focal resources. For each adaptation action, participants then evaluated where, when, and how to implement those actions as well as collaboration and capacity needs.

\(^3\) http://ecoadapt.org/workshops/NMSAS-AS-workshop
Current Management Goals and Potential Vulnerabilities
Workshop participants identified key current management goals and their potential climate and non-climate vulnerabilities. In response to these vulnerabilities, participants then evaluated whether or not existing management actions may be effective in reducing vulnerability; identified what, if any, climate and non-climate vulnerabilities the action helps reduce; and evaluated the feasibility of action implementation. Given action effectiveness and feasibility, participants then evaluated whether or not to continue implementation of the action. For those actions recommended for continued implementation, participants then identified both how and where to implement.

Future Management Goals and Adaptation Actions
Workshop participants also identified the possible future management goals and adaptation actions for each resource. They then evaluated action effectiveness and feasibility; identified the timeframe for action implementation; described where and how to implement the action; and identified collaboration and capacity needs. Timeframe, collaboration and capacity needs are defined below.

- **Implementation timeframe**: Identify when a particular action could feasibly be implemented.
 - Near-term: <5 years; Mid-term: 5-15 years; or Long-term: >15 years.
- **Collaboration**: Identify any other agencies, organizations, or people needed to collaborate with in order to implement an action.
- **Capacity needed**: Identify capacity needed for implementation such as data, staff time and resources, funding, or policy changes, among others.

These workshop activities generated a range of recommended adaptation actions that could be implemented both now and in the future. The resulting actions are not comprehensive, and users of this report are encouraged to explore additional adaptation actions that may help reduce vulnerabilities, increase resilience, or capitalize on opportunities presented by climate change.

Adaptation Action Feasibility
Participants were also asked to assess the effectiveness, feasibility, and implementation of all actions identified. These assessments help identify which actions can be easily implemented and those that might need more collaboration and longer time frames to help develop an implementation plan in STEP 4 of the Adaptation Planning Process. Participants were asked to identify the following:

- **Action effectiveness**: Identify the effectiveness of the action in reducing vulnerability.
 - High: action is very likely to reduce vulnerability and may benefit additional goals or habitats
 - Moderate: action has moderate potential to reduce vulnerability, with some limits to effectiveness
 - Low: action is unlikely to reduce vulnerability

- **Action feasibility**: Identify feasibility of implementing the action.
• High: there are no obvious barriers and it has a high likelihood of being implemented
• Moderate: it may be possible to implement the action, although there may be challenges or barriers
• Low: there are obvious and/or significant barriers to implementation that may be difficult to overcome

• **How to implement**: Identify how to apply this action given vulnerabilities. For example, consider planting native species that can cope with a range of future conditions or those best adapted to projected future conditions.

• **Where to implement**: Identify the management, ecological, or site conditions where the action could be most appropriately implemented. For example, is it best to implement in coral habitats that are resilient to bleaching.

Chapter 3 Vulnerability Assessment and Adaptation Planning Results

Summary
Overall the vulnerability assessment of the 10 focal resources was moderate to low-moderate with mostly high and moderate confidence scores. This is probably due to limited **20-year timeframe** that participants chose to use rather than considering multiple scenarios and time steps of 10, 20, 50, and 100 years (Glick et al. 2011). If longer timeframes were used for this vulnerability assessment, one would expect higher vulnerability and lower confidence scores.

<table>
<thead>
<tr>
<th>FOCAL RESOURCE</th>
<th>VULNERABILITY SCORE</th>
<th>CONFIDENCE SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral Reef Habitat</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Mangrove Habitat</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Giant Clam</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Herbivore Reef Fish</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Charismatic Reef Fish</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Reef Piscivores</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Pelagic Fish</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Sharks and Rays</td>
<td>Low-Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sea Turtles</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
1. Coral Reef Habitat

Introduction
Coral reefs in American Samoa include three zones: reef flat, reef crest, and reef slope. Reef flats are shallow and narrow (50-500 m) systems extending from shore to the reef crest. Reef crests are shallow systems representing the highest point of the reef system and dividing reef flat from slope; they are occasionally exposed during low tides, as are reef flats. Reef slopes descend 20-30 m in depth on the oceanic side of the reef crest. Differences in temperature, salinity, wave action, water depth, and sedimentation between these three zones affects coral community composition. However, American Samoan coral reef communities are generally dominated by crustose coralline algae with live hard corals being less dominant, and brown macroalgae occasionally occurring on reef slopes and flats (Fenner et al. 2008; US DOC NOAA ONMS 2012). Unique coral communities occur at Rose Atoll and Swains Island (Kendall 2011; US DOC NOAA ONMS 2012). In general, coral reef systems harbor high biodiversity (US DOC NOAA ONMS 2012).

Vulnerability Assessment Results

Workshop participants evaluated coral reefs in American Samoa to have a moderate relative vulnerability to climate change due to moderate-high sensitivity to climate and non-climate stressors, moderate exposure to future climate changes, and moderate-high adaptive capacity. Coral reefs are sensitive to numerous climate stressors, including ocean acidification, sea surface temperature, tropical storms, runoff/stream flow, coastal erosion, and currents, mixing, and stratification. These stressors directly affect coral survival, recruitment, and growth, as well as alter water quality by affecting sediment, pollutant, and nutrient delivery. Climate stressors may also increase coral susceptibility to disturbance regimes, including disease and crown-of-thorns starfish outbreaks, which elevate coral mortality. Coral reefs are sensitive to several non-climate stressors, including dredging, land use change, overwater/underwater structures, nutrient loading, sedimentation, trampling, seawalls, and fishing. Non-climate stressors can directly degrade and destroy coral communities, and will likely compound declining water quality trends occurring with climate change. Coral reefs in American Samoa are generally healthy and continuous around islands, and have been able to recover from a variety of past environmental disturbances, although they are less resilient to human disturbances. High coral biodiversity enhances overall resilience, but future functional group shifts may occur as many reef-building coral species are vulnerable to climate change, which will impact overall reef stability. Coral reefs provide important commercial and subsistence fishing opportunities, as well as other ecosystem services such as biodiversity, coastal protection, and recreation. A variety of marine protected areas have been established; however, they cover only a small percentage of existing reef habitat, and protective regulations vary between sites.
Current Management Actions

Goal 1: Protect Coral Reef Habitat
- Water quality testing for bacteria and near shore nutrient input, sometimes resulting in beach closures
- Reduce litter and marine debris
- Federal, territorial, and village Marine Protected Areas (MPAs)
- No discharge and anchoring in the Sanctuary

Goal 2: Control crown-of-thorns starfish outbreaks
- Targeted crown-of-thorns starfish eradication with ox bile
- Manual eradication of crown-of-thorns starfish (spear or bash)
- Ban take of large reef fish (e.g., humphead wrasse), which are believed to be crown-of-thorns predators

Goal 3: Use education and outreach to protect coral reefs and bring the site to the people
- School programs such as Reef Check (geared toward any audience; provides education on coral fragility and importance of coral habitat so audience can become environmental steward)
- Virtual experience for students, allowing them to see changes, including climate change impacts with special goggles

Future Management Actions

Goal 1: Decrease nutrient input and sedimentation into coastal waters
- Ensure piggery compliance and enforce EPA regulations
- Support sewer expansions, new waste water treatment plants, proper septic tank installation, and cesspool removal
- Plant more trees/plants in coastal areas and in villages to reduce runoff
- Ensure compliance of coastal development setbacks
- Start a wetlands restoration project
- Education/outreach on strengthening village laws
- Remove all wastewater outfalls

Goal 2: Cooling for bleaching prevention and reduction
- Move deeper, cooler water to shallow, warmer areas

Goal 3: Develop resilient marine protected areas (MPAs) – design future MPAs in areas that are climate resilient and effective for multiple species (consider network of MPAs)
- Analyze what is already in place and what is working to identify priority areas for protection
- Allow easy exchange of data and accessibility of information to allow managers to assess changes over time

Goal 4: Assemble a coral reef database and develop sharing method for management and decision support
- Develop easy exchange and accessibility of information to allow managers to assess changes over time

Goal 5: Use coral nursery gardens for restoration
- Select corals that do not bleach for restoration projects
Feasibility and Effectiveness of Current and Future Management Actions

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>Low F/Low E</th>
<th>Moderate</th>
<th>High F/High E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Move deeper, cooler water to shallow, warmer areas via piping</td>
<td>Remove all wastewater outflows</td>
<td>Support sewer expansions, waste water treatment plants, proper septic tank installation, and cesspit removal</td>
</tr>
<tr>
<td></td>
<td>Kill crown-of-thorns starfish with osbol injection</td>
<td>Continue stormwater best management practices in/outside</td>
<td>Select coral that does not bleach for restoration projects</td>
</tr>
<tr>
<td></td>
<td>Ensure piggery compliance and enforce EPA regulations</td>
<td>Ensure compliance with coastal development setbacks</td>
<td>Plant more trees/plants in coastal areas and villages to reduce runoff</td>
</tr>
<tr>
<td></td>
<td>Use education and outreach to protect coral reefs and bring benefit to the people*</td>
<td>Develop resilient marine protected areas*</td>
<td>Water quality testing for bacteria and near-shore nutrient input</td>
</tr>
<tr>
<td></td>
<td>Spear/bash crown-of-thorns starfish and remove from reef</td>
<td>Increase law enforcement and fines for wetland violations</td>
<td>Assemble a coral reef database and develop a data sharing method for management and decision support*</td>
</tr>
<tr>
<td></td>
<td>Plant more trees/plants along upstream areas to reduce runoff</td>
<td>Increase law enforcement and fines for wetland violations</td>
<td>American Samoa Village Marine Protected Areas (MPAs) - no-take MPAs and Community-based Fishing Management Programs</td>
</tr>
<tr>
<td></td>
<td>Ban take of large reef fish (potential crown-of-thorns starfish predators)</td>
<td>Increase law enforcement and fines for wetland violations</td>
<td>American Samoa Village Marine Protected Areas (MPAs) - no-take MPAs and Community-based Fishing Management Programs</td>
</tr>
</tbody>
</table>

Note: Effectiveness and feasibility for coral reef current management actions includes, among other factors, workshop participants' perceptions of current acceptance and compliance. Engaging the community to create greater acceptance and compliance can lead to higher effectiveness. Additionally, one reviewer commented that it is good to select corals that are resilient to bleaching for restoration projects, but it is generally considered ineffective because of the scale of the process, i.e., the amount of work needed is large and the area of reef restored is small. Therefore, the reviewer suggested moving “select coral that does not bleach to restoration projects” from the upper right to the lower left.

2. Mangroves and Lagoon Habitat

Introduction
Mangrove forests in American Samoa are found only on Tutulia and Aunu’u Islands, and include tidal fringing and interior/partially enclosed basin forests. They are typically found in sheltered coastal lagoons and protected areas near stream mouths (ASCCFP 2010). Three mangrove species occur: oriental mangrove (Bruguiera gymnorrhiza) is the dominant species, red mangrove (Rhizophora mangle) can be found along seaward margins, and the puzzlenut tree...
(Xylocarpus moluccensis) is quite rare. Other mangrove forest associates include beach hibiscus (Hibiscus tiliaceus), fish-poison tree (Barringtonia asiatica), and Tahitian chestnut (Inocarpus fagifer) (Bardi and Mann 2004). Mangrove forests thrive in brackish water conditions, and provide critical habitat for a variety of fish, invertebrate, and mollusk species (US DOC NOAA ONMS 2012).

Vulnerability Assessment Results

Workshop participants evaluated American Samoan mangroves to have a low-moderate relative vulnerability to climate change due to moderate sensitivity to climate and non-climate stressors, moderate exposure to projected future climate changes, and moderate adaptive capacity. Mangrove forests are sensitive to coastal erosion and sea level rise, which cause landward retreat, potentially leading to habitat extirpation if retreat is impossible. Earthquakes contribute to sea level changes and tsunami risk; tsunamis and cyclones can severely damage mangrove systems and cause high tree mortality. Non-climate stressors play the largest role in American Samoan mangrove decline. Mangrove clearing changes the coastal hydrology resulting in debris, nutrient and pollutant build up. Additionally, roads/armoring can block landward mangrove migration, increasing habitat vulnerability to sea level rise. Significant portions of mangrove forests have been lost to human land use in American Samoa; only five stands across two islands remain, encompassing roughly 52 hectares (US DOC NOAA ONMS 2012). Mangroves may not recover from extensive alteration or mortality; when stands do recover naturally, recovery time ranges from 15-30 years. Facilitated rehabilitation has experienced varying success. As the key functional group, low mangrove diversity increases habitat vulnerability to climate change, although diversity amongst affiliate tree species is higher. Mangroves provide a variety of ecosystem services (e.g., biodiversity, fish nursery habitat, coastal protection), although there is low cultural recognition of these services. Mangroves are protected through several regulatory mechanisms, but a lack of enforcement undermines this legal protection.

Current Management Actions

Goal: Control residential/commercial development near mangroves to protect mangrove habitat

- Prevent building over mangroves through permitting process (Project Notification and Review System – PRNS)
- Enforcement of special management areas designed specifically to protect mangroves on Tutuila

Future Management Actions

Goal 1: Reduce non-climate stressors such as debris from streams that destroy/smother mangrove habitat

- Remove debris from mangrove habitats
• Educate people on the effect of debris on mangroves and enforce ban on debris thrown out upstream
• Increase use of stream catchments to catch debris

Goal 2: Increase public knowledge of importance of mangroves and increase local enforcement.
• Create mangrove education and outreach campaign to increase understanding of mangroves and understanding of existing guidelines in policies that protect mangroves
• Create targeted village education and outreach campaign to increase likelihood of regulation enforcement

Feasibility and Effectiveness of Current and Future Management Actions

Figure 6. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Mangroves.

3. Water Quality

Introduction
Water quality in American Samoa is compromised by increased population growth, clearing for agriculture, and increased bacterial, pharmaceutical, pesticide, pathogen, and nutrient pollution from poorly constructed human and piggery waste disposal systems. Most of the wells and pumps for groundwater distribution are found in the Tafuna-Leone plain, which is also where most residents and businesses are located (ASEPA 2014). Since the Tutuila volcanic stratum is very permeable, it is also very vulnerable to contamination and pollution from rain
Vulnerability Assessment Results

The relative vulnerability of water quality in American Samoa was evaluated by workshop participants to be moderate-high due to high sensitivity to climate and non-climate stressors, high exposure to projected future changes, and moderate to high adaptive capacity. Water quality is sensitive to climate drivers that alter hydrology of rivers and streams, such as air temperature, tropical storms, precipitation, and drought, causing soil erosion, pollution, and nutrient loading. Other climate drivers, such as ocean acidification and increased ocean temperatures, will impact water quality of nearshore coastal waters. Water in American Samoa is a limited resource found in groundwater and streams, and is very vulnerable to increased demand due to development and population growth. Sea level rise and increased storms will increase saltwater intrusion into groundwater reserves (UGCRP 2009).

Current Management Actions

Goal: Improve water quality

- Improve sewage effluent quality and sewage treatment
 - Secondary treatment
 - UV lights
 - Fix leaking pipes
- Improve groundwater quality
 - Fix leaking pipes
 - Seal cesspools and convert to septic
 - Oil collection
 - Pesticide control
 - Identify resilient aquifers
 - Microfiltration plants
- Improve surface water quality and stormwater management
 - Nets at stream mouths to catch debris
- Rain gardens/soak beds
- Tamaligi tree removal
- Project Notification and Review System (PNRS) sediment permit requirement
 - Enforce the Keep American Samoa Beautiful Act (The anti-littering bill was signed into law October 2016)

Future Management Actions

Goal: Develop and instill a sense of responsibility in protecting watersheds and disposing of waste and trash appropriately

- Increase public education and outreach
- Implement and enforce environmental disposal fee to assist with funding
- Find alternatives to pollutants for which American Samoa does not have the capacity to dispose of or treat (e.g., PFCs)

Feasibility and Effectiveness of Current and Future Management Actions

![Figure 7. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Water Quality.](image)

Note: The anti-littering bill was signed into law – Keep American Samoa Beautiful Act – now a current action.
4. Giant Clams

Introduction
Giant clams, including *Tridacna maxima*, *T.squamosa*, and *T. noae*, are generally found along reef tops and slopes of clear and shallow American Samoa waters. They are particularly abundant in the sanctuary Mulīāva Management Area and Rose Atoll Marine National Monument, as well as the north and west sides of Ta’u. They have a special significance to American Samoa cultural heritage, the fa’ā-Samoa thus are at risk to be overfished (US DOC NOAA ONMS 2012). Fa'alavelave, traditional gatherings among communities and extended families, include offerings of giant clams when available (Fenner et al. 2008). There have been some aquaculture efforts for *Tridacna sp.* in Tutuila and initiating grow-out facilities in Aunu’u and the Manu’a islands (US DOC NOAA ONMS 2012). Giant clams, *Tridacna sp.* were listed vulnerable on the IUCN red List in 2006 (IUCN 2014).

Vulnerability Assessment Results

![Moderate Vulnerability](Moderate_Vulnerability.png)

Workshop participants and experts evaluated giant clams in American Samoa to have a moderate relative vulnerability to climate change due to moderate-high sensitivity to climate and non-climate stressors, moderate exposure to future climate changes, and moderate-high adaptive capacity. Giant clams are sensitive to several climate stressors, including ocean acidification, ocean temperature, currents, mixing, and stratification. These stressors can directly affect recruitment and growth of giant clams.

Current Management Actions
Goal: Increase giant clam populations
- Enforce harvest regulations to avoid over-harvest of this culturally important resource

Future Management Actions
Goal: Increase giant clam populations/stocks by supporting fisheries in shallow waters and stocking clams in deeper waters
- Support hatchery operations for stocking in shallow water to support fisheries and stocking clams in deep water beyond 100 ft. (30.5 m) for stock replenishment
- Conduct a genetic study of giant clams between islands to diversify seed source
Feasibility and Effectiveness of Current and Future Management Actions

Figure 8. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Giant Clams.

5. Reef Fish
A vulnerability assessment was conducted for reef herbivores, reef piscivores, and charismatic reef fish. During the vulnerability assessment workshops participant felt that each different type of reef fish assemblage should be considered independently since they have unique attributes. During the adaptation strategy workshops, participants felt that current and future management actions to reduce vulnerabilities and increase resilience would be the same for all reef dependent fishes, thus they should be considered as a reef fish assemblage and not differentiated by their attributes.

Reef Herbivores Introduction
Common reef herbivorous fish used for subsistence, artisanal, and recreational purposes include the surgeon fisheries such as the lined surgeonfish or alogo (*Acanthurus lineatus*) and manini and pone (*Acanthurus* sp.) (Craig 2009). Other reef herbivores include parrotfishes (Scaridae), soldierfishes/squirrelfishes (Holocentridae), wrasses (Labridae), and goatfishes (Mullidae). The alogo is a quite abundant and popular Samoan food fish and accounts for approximately 30% of reef fish caught for the subsistence fishery, while the manini and pone are also abundant and popular subsistence and artisanal fisheries (Craig 2009). Parrotfishes and surgeonfishes also have close association to the reef environment. Parrotfishes are known as bioeroders, feeding on detritus on reefs by scraping reef surfaces, while surgeonfishes are...
more diverse and can feed on both plant and detrital matter. All reef herbivorous fishes contribute in limiting algal growth in coral reefs and helping to maintain diversity and coral reef health (Comeros-Raynal 2012). Globally these species assemblages are at low risk of extinction. However, they are regionally threatened due to increased harvest from subsistence fisheries. The bumphead parrotfish (*Bolbometapon muricatum*) is considered a prize catch and has been listed as a species of concern because of illegal spearfishing and habitat degradation (US DOC NOAA ONMS 2012).

Reef Herbivore Fish Vulnerability Assessment Results

The relative vulnerability of herbivorous reef fish was evaluated by workshop participants to be low to moderate due to moderate sensitivity to climate and non-climate stressors, such as sea surface temperatures, habitat destruction by disease, and invasive species such as the crown-of-thorns starfish; moderate exposure to projected future climate changes in the next 20 years of increased nutrient runoff and sedimentation from precipitation and extreme storms; and high adaptive capacity. Reef fish tend to live near the upper end of their thermal tolerance limit and may experience physiological and developmental impacts and range shifts due to increases in sea temperature (Guidry and Mackenzie 2001; Leong et al. 2014).

Reef Piscivores Introduction

There are over 69 different species of reef fish and invertebrates species/assemblages consumed and sold in American Samoa. Of those targeted, reef-dependent piscivores include jacks (Carangidae), snappers (Lutjanidae), groupers (Serranidae), and emperor fish (Lethrinidae) (Levine and Allen 2009). Continued overfishing and declines in coral reef habitat will negatively impact reef fish populations, which are valuable to commercial, recreational, and subsistence fishermen (Gregg et al. 2016). Many reef-dependent fish that use coral reefs for spawning, foraging, protection, and feeding will likely experience population declines as corals degrade due to increased sea temperature, ocean acidification, and invasive species (Leong et al. 2014).

Reef Piscivores Vulnerability Assessment Results

The relative vulnerability of reef-dependent piscivores was evaluated by workshop participants to be low to moderate due to moderate to high sensitivity to climatic and non-climatic stressors including ocean acidification and increased sea surface temperatures impacting reef habitat and biological processes, such as growth and reproduction. Reef-dependent piscivores also are impacted by high fishing pressure and nutrient loading/pollution but have high adaptive capacity with increased management of both habitat and species assemblages.

Charismatic Reef Fish Introduction

Reef fish (both piscivores and herbivores) are abundant and highly diverse with over 930 species (Craig 2009). Many coral reef fish are territorial algal eaters and habitat specialists,
tending to only frequent certain habitats within the coral reef system with some taking permanent residence, such as damsels (Pomacentridae), mano’o blennies, and gobies (Gobiidae) (Wass 1984). Damselfish in particular are very territorial and aggressively protect their habitat. Butterflyfishes are fully dependent on feeding on live coral and are vulnerable to the overall decline in coral reefs worldwide (Cole et al. 2008). Charismatic reef species assemblages are also vulnerable to capture for aquaria and/or bioprospecting trade, although there is currently no harvest for the marine ornamental industry in American Samoa.

Charismatic Reef Fish Vulnerability Assessment Results

The relative vulnerability of charismatic reef fish was evaluated by workshop participants to be low to moderate due to moderate to high sensitivity to climatic and non-climatic factors such as ocean acidification, increased sea temperature, land use changes, and dredging that impacts coral reef habitat. Species assemblages will be impacted by future moderate exposure of increased sea surface temperature and erosion causing further sedimentation to the coral reef habitat.

Current Management Actions For All Reef Fish Assemblages

Goal: Protect reef fish populations and ensure sustainable fishing practices
- Fully utilize and enforce all fishing regulations
 - 2001 American Samoa Governor Executive Order banned SCUBA fishing due to depletion of reef piscivores and herbivores and increase in fishing efficacy
 - Minimum fishing net size, and nets cannot be left overnight; nets can only be left unattended 3-5 hours
 - Daily catch limits exist in federal water (3-200 miles) (5-322 km.)
 - Department of Marine and Wildlife Resources Community-Based Fisheries Management Program (0-3 miles) (0-5 km.)
 - Non-destructive fishing rule in territorial waters
 - Encourage true traditional and cultural fishing methods – the fa’a-Samoan “Samoan way”

Future Management Actions For All Reef Fish Assemblages

Goal: Promote diverse and healthy reef fish populations
- Set size limits – make sure they are over the reproductive age (greater number of years at reproductive age could increase the likelihood of recruitment success)
- Set catch limits – number of individual fish per day (if sold, commercial license still needed)
Feasibility and Effectiveness of Current and Future Management Actions for All Reef Fish Assemblages

Figure 9. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Reef fish.

6. Pelagic Fish

Introduction
Pelagic fish species in the region are managed through the Western and Central Pacific Fisheries Commission and include migratory tunas such as the bigeye (Thunnus obesus), yellowfin or asiasi (T. albacares), albacore or apakoal (T. alalunga), dogtooth or tagi (Gymnosarda unicolor) and skipjack or atu (Katsuwonus pelamis) (Craig 2009). Other important species include billfish (Tetrapturus auda, Makaira mazara, Xiphias gladius), dolphinfish (Coryphaena hippurus, C. equiselas) and wahoo (Acanthocybium solandri) (Craig 2009). Most pelagic fish prefer open ocean area and seldom come close to shore; occasionally the dogtooth tuna is seen along reef areas. Although American Samoa has a large tuna packing cannery industry (Chicken of the Sea), tuna is not particularly abundant in the region and most of the tuna canned locally use fish caught in other areas (US DOC NOAA ONMS 2012).
Vulnerability Assessment Results

Commercially valuable pelagic fish species were evaluated to be moderately vulnerable by workshop participants due to changes in temperature, ocean circulation, and ocean acidification. Common migratory pelagic tunas have already shown responses to increased temperatures and changes in circulation patterns during El Niño Southern Oscillation (ENSO) events (Keener et al. 2012; Leong et al. 2014). Future changes in distribution and abundance of migratory species might result due to changes increased temperature and changes in currents affecting prey availability and thermal tolerance.

Current Management Actions /Future Management Actions
Participants did not evaluate current and future management actions for pelagic fish. They discussed pelagic fish along with sharks and rays but did not complete a full assessment (see below).

7. Sharks and Rays

Introduction
Common species of sharks in American Samoa include the blacktip reef shark (Carcharhinus melanopterus) and the whitetip reef shark (Triaenodon obesus). Other rarer species include hammerhead sharks, tiger sharks (Galeocerdo cuvier), and whale sharks (Rhincodon typus) (Craig 2009). The most common species of rays in American Samoa are Eagle rays (Myliobatidae sp.). Sharks and rays are generally rare across Indo-Pacific coral reef habitats, and have been protected from catch and possession since 2012 (Craig 2009; US DOC NOAA ONMS 2012). Although sharks are not typically targeted in American Samoa, violations have been observed. Blacktip and whitetip reef sharks are commonly found in nearshore waters and sighted while diving, snorkeling, and swimming. Hammerhead sharks are known to give birth in Pago Pago Harbor, while few tiger sharks have been caught around Tutuila (Craig 2009). Increased sea surface temperatures may affect shark and ray ranges, prey availability, and embryonic development (Hobday et al. 2009). Extreme precipitation events can also diminish their ability to effectively use their sense of smell and electroreception to locate prey (Hobday et al. 2009).

Vulnerability Assessment Results

Sharks and rays were evaluated have low to moderate vulnerability by workshop participants due to climate and non-climate stressors such as ocean acidification, sea surface temperature, and changes in currents and wind. Although sharks are protected, there are threats of harvest for shark fins. Sharks and rays are impacted by the same oceanographic conditions that affect
pelagic fish, and as well as by land-based stressors including coastal erosion, sedimentation, and runoff.

Current Management Actions
Participants at the workshop were not familiar with current management actions for sharks and rays and were not comfortable addressing current management actions vulnerability to climate changes in this workshop. (Note: Shark fishing is prohibited by the American Samoa Government).

Future Management Actions
Goal: Increase research on sharks and rays
- Increase research to identify spawning/rearing critical habitat (most are protected)
- Increase research on climate change effects on sharks and rays
- Increased enforcement and court outreach and capacity to lead to convictions

Feasibility and Effectiveness of Current and Future Management Actions

![Graph of Feasibility and Effectiveness]

Figure 10. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Sharks and Rays.
8. Sea Turtles

Introduction
Sea turtles in American Samoa, also called Laumei (DMWR 2006), include the endangered hawksbill sea turtle (*Eretmochelys imbricata*) (US DOC NOAA ONMS 2012) and the endangered green sea turtle (*Chelonia mydas*) (81 FR 20058). Both species are globally distributed throughout tropical and sub-tropical zones. Locally, juveniles of both species are commonly found in near-shore coral reef habitats in American Samoa. It has been assumed that only hawksbills nest on beaches of Tutuila, Aunu’u and the Manua Islands (Craig 2009); however, recent tagging work by DMWR and the National Park of American Samoa have confirmed that substantial proportions of turtles nesting on Ofu are green turtles (per comm, M. MacDonald, DMWR) additional surveys are needed to determine if the same is true of other islands. There is a substantial nesting aggregation of green turtles at Rose Atoll. NMFS scientists estimate as many as 300 green turtles nest there (Oram et al 2016), making Rose Atoll, a significant source populations for the central South Pacific Distinct Population Segment of green turtles. Nesting turtles from Rose Atoll have been tracked returning to forage areas in Samoa, American Samoa, Fiji, Cook Islands, Vanuatu, Tahiti, Papua New Guinea, and French Polynesia (NMFS 2015).

Vulnerability Assessment Results

Overall sea turtle vulnerability was rated as moderate by workshop participants due to moderate sensitivity to climate and non-climate stressors, moderate exposure to projected future climate changes, and low to moderate adaptive capacity. Sea turtles are vulnerable to loss of habitat due to sea level rise and coastal erosion (Poloczanska et al. 2009). Increased air and sea temperatures also impact nest sex composition and nesting preference (Cheng and Gaskin 2011). Sea turtle habitat is also threatened by coastal development including coastal armoring, water quality, and light pollution (Cheng and Gaskin 2011). Other non-climatic threats to sea turtles include incidental fisheries catch and possible predation and poaching of eggs.

Current Management Actions

Goal: Protect nesting habitat
- Require permits for sand mining – not a lot of space for nesting on Tutuila
- Amend the Project Notification and Review System (PNRS) setback requirement – 100 ft. (30.48 m) from shoreline
- Monitoring and satellite tagging of nesting turtles

Future Management Actions

Goal 1: Protect turtle nesting habitat by preserving sand
- Create ban on sand mining (may require change in enforcement agency and need to include provisions to allow for cultural use)
• Increase education for why sand is critical for turtles

Goal 2: Protect turtle nests from heat stress
• Increase native grass/vegetation planting to provide shade

Goal 3: Protect turtles by increasing light management
• Use turtle-friendly street lights
 o Paint over lights; paint side that faces beaches
 o Use special types of light bulbs along shorelines
• Increase education for coastal residents and businesses to turn lights off during nesting season
 o Motion sensor lights may already be in use

Goal 4: Create education and outreach campaign about sea turtles and their habitat.
• Create widespread public awareness campaign
• Create a citizen science program for residents to report what they see
• Engage village councils to help protect and enforce laws

Feasibility and Effectiveness of Current and Future Management Actions

<table>
<thead>
<tr>
<th></th>
<th>Low F/Low E</th>
<th>Mod F/Mod E</th>
<th>High F/High E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Increase native grass/vegetation planting to create shade</td>
<td>Motion sensor lights may already be in use</td>
<td>Monitoring turtles/eggs; satellite tagging to track migration routes</td>
</tr>
<tr>
<td>Low F/Low E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High F/High E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low F/Low E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High F/High E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low F/Low E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High F/High E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Feasibility and Effectiveness of Current (blue) and Future Adaptation Actions for Sea Turtles.
Literature Cited

Appendices

Appendix I: National Marine Sanctuary of American Samoa

The National Marine Sanctuary of American Samoa is currently one of 14 sites of the National Marine Sanctuary System that includes a network of underwater parks encompassing more than 600,000 square miles (1,553,993 sq. km.) of marine and Great Lakes waters throughout the US mainland and Pacific Islands. Each having its own significance for marine life, cultural and historical phenomenon, economic value, tourism and the unique people and communities in which they are found; sanctuaries are places where people work together to conserve and protect special places (US DOC NOAA ONMS 2012).

On July 26, 2012, five discrete geographical areas were added to the existing Fagatele Bay National Marine Sanctuary and the name of the sanctuary was changed to the National Marine Sanctuary of American Samoa (77 FR 43942). NOAA also amended existing sanctuary regulations and applied these regulations to activities in the expanded sanctuary. These final regulations took effect on October 15, 2012 (77 FR 65815).

Fagatele Bay Management Area

The Fagatele Bay is entirely no-take. Fishing and other extractive uses are not allowed. Allowed – non-extractive research, education, and recreation.

Fagatele Bay is a 0.25 square mile (0.65 sq. km.) treasure off the southwest coast of Tutuila. As of 2012, when the sanctuary expanded, it is now a no-take marine protected area to support what is one of the most biologically diverse areas in the National Marine Sanctuary System and the only sanctuary south of the Equator. The bay has proven to be more resilient than other reefs in the territory as was seen during the most recent, 2015 global coral bleaching event. The cultural significance of Fagatele Bay lies in its connection with a historic coastal village that
occupied its shores from prehistoric times through the 1950s. The site has not been excavated, but foundations of structures and pathways remain beneath the overgrown vegetation. Fagatele Bay contains one of the few marine archaeological records in the territory: grinding holes or bait cups carved by Ancient Samoans into the shoreline along the reef edge (US DOC NOAA ONMS 2012).

Surveys have identified at least 200 species of corals in the bay that are thought to be the centerpiece of a community of more than 1,400 species of algae and invertebrates and more than 270 species of fish. Abundant groups include adult and juvenile damselfish, surgeonfish, wrasse, butterflyfish, and parrotfish. Herbivorous species can help decrease available sources of food for threats like juvenile crown-of-thorns starfish that once adults can decimate corals as seen during outbreaks around American Samoa in the 1970s as well as in recent years (US DOC NOAA ONMS 2012).

Fagalua/Fogāma’a Management Area

Allowed – research, education, recreation, hook-and-line fishing, cast nets, spearfishing (non-SCUBA assisted), and other non-destructive fishing methods including those traditionally used for sustenance and cultural purposes such as gleaning, `enu and ola (traditional basket fishing).

Fagalua/Fogāma’a is roughly 0.46 square miles (1.19 sq. km.) of bay area on the southwest shore of Tutuila. The importance of the relationship between this bay and the surrounding environment is comparable to Fagatele Bay, located just over the ridge. Both coves are considered regional hotspots with high coral coverage and many different types of coral and fish species. Because of this similarity, the area provides a replicate habitat for increased protection, scientific research and overall resilience of coral reef ecosystems. Within this area, Fagalua is the site of two turtle images carved in a boulder, prehistoric fale foundations and may contain buried archeological deposits (US DOC NOAA ONMS 2012).
Aunu’u Management Areas

Zone A – Multiple Use Zone

Allowed – research, education and recreation. Hook-and-line fishing, casting nets, spearfishing (non-scuba assisted) and other non-destructive fishing methods including those traditionally used for sustenance and cultural purposes such as gleaning, ‘enu and ola.

Zone B – Research Zone

Allowed – research, education, recreation and surface fishing for pelagic species – including fishing by trolling. Examples of pelagic fish include: dogtooth or white tuna, skipjack tuna, spearfish, billfish, wahoo, masimasi, rainbow runner and sailfish.

Not Allowed – fishing for bottom-dwelling species. Bottom fishing and trawling is prohibited.

Aunu’u is a small, volcanic island with a land area of 0.58 square miles (1.50 sq. km.). Major features of the island include Aunu’u Crater, Pala Lake (a unique area of red quicksand), and Faimulivai Marsh, the largest freshwater wetland in American Samoa. The island is a National Park Service National Natural Landmark. The area surrounding the island overlaps with four distinct biogeographic regions, making it a highly diverse marine area that includes hot spots for coral cover, fish biomass, and fish richness (US DOC NOAA ONMS 2012).
A total of 5.8 square miles (15.02 sq. km.) of reef and offshore waters around Aunu’u have been included in the sanctuary, with 3.9 square miles (10.10 sq. km.) designated a research zone and allows surface fishing for pelagics only, and 1.9 square miles (4.92 sq. km.) multiple use zone that allows traditional and non-destructive fishing practices. The research and multiple use zones will allow for comparisons over time of an area that prohibits the take of reef fish and bottom dwelling species and benefits to an adjacent area of higher human uses that meets the needs of day-to-day living in sustainable ways (US DOC NOAA ONMS 2012).

The area off the coast of Aunu’u Island consists of marine habitats of varying depth including shallow water reefs to deep waters. The benthic habitats surrounding Aunu’u are very diverse and comprised mostly of coral reef and hardbottom formations. To the east of the island extends a coral bank with extensive aggregate patch reef on its western edge, descending into deeper waters that support mesophotic reefs. Turf algae dominate much of the bank habitat near the island, forming extensive algal plains. Together, these features create a diversity of habitat unique in American Samoa (US DOC NOAA ONMS 2012).

Ta’u Management Area

Allowed – research, education, recreation, hook-and-line fishing, cast nets, spearfishing (non-SCUBA assisted) and other non-destructive fishing methods including those traditionally used for sustenance and cultural purposes such as gleaning, ‘enu and ola.

Ta’u Island, part of the Manu’a Island group, is located 70 miles (112.65 km.) east of Tutuila and 6.9 miles southeast of Olosega. The Ta’u Management Area is approximately 14.6 square miles (37.81 sq. km.) and includes both nearshore and deep waters from Si’ufa’alele Point south along the western coast, and includes deep waters beginning 0.25 miles (0.40 km.) offshore, adjacent to the nearshore waters of the National Park of American Samoa (NPSA), along the southern coast between Si’ufa’alele Point and Si’u Point. Located within the sanctuary are massive *Porites* corals in an area known as “Valley of the Giants.” This area is also home to what is believed to be possibly the oldest and largest *Porites* coral in the world. At over 500
years of age, “Big Momma” lies at a depth of 50 feet (15.24 m.), stands 21 feet (6.40 m.) tall, 42 feet (12.80 m.) wide and has a circumference of 135 feet (41.15 m.). This area has become an attraction for researchers as well as a destination for the developing dive tourism industry (US DOC NOAA ONMS 2012).

The western side of Ta’u’s southern coast is a regional hotspot for coral and fish diversity and possesses a distinct coral community. The sanctuary serves as a deep water buffer zone for the marine areas of the NPSA, as well as adding near shore and reef protection around the Porites coral heads (US DOC NOAA ONMS 2012).

Swains Management Area
Allowed – research, education, recreation, hook-and-line fishing, cast nets, spearfishing (non-SCUBA assisted) and other non-destructive fishing methods including those traditionally used for sustenance and cultural purposes such as gleaning, `enu and ola.

Swains Island is a privately owned low-lying coral atoll located about 200 miles (321.87 km.) northwest of Tutuila. It is approximately 1.5 miles (2.41 km.) in diameter, with approximately 1 square mile (2.59 sq. km.) of highly vegetated sand and coral with a maximum elevation of 6 feet (1.83 m.) above sea level. Swains Island has a high amount of coral cover and many different types of corals. Coral disease is low at Swains Island. Swains Island is characterized by large schools of predators, mostly barracudas, jacks and snappers. Overall, there are high amounts of large fish around Swains Island. This sanctuary area includes 52.3 square miles (135.46 sq. km.) of territorial waters (US DOC NOAA ONMS 2012).
Ocean explorer Jean-Michel Cousteau has referred to Swains Island as “one of the last jewels of the planet.” A 2013 expedition to the island that included offshore, maritime archeology and terrestrial surveys led to discoveries that have experts calling Swains a microcosm of cultural influences in the Pacific. The findings are now available through the NOAA National Marine Sanctuaries publication, “Unlocking the secrets of Swains Island: a Maritime Heritage Resources Survey” (Van Tilburg et al 2013).

Muliāva Management Area

Allowed – research, education, recreation, and fishing with a permit *(see below for additional information)*.

Muliāva, part of the Kingdom of Manu´a, means end of the channel. Culturally, the name remains a reference to traditional knowledge of the ocean. Rose, the name appropriate for the color of the corals surrounding Rose Island, has also been referred to as “Motu o Manu” or Island of Birds (US DOC NOAA ONMS 2012).
The Rose Atoll Marine National Monument was established in 2009 by Presidential Proclamation 8337 (74 FR 1577). In 2012, the sanctuary Muliāva management area that includes 13,507.8 square miles (34,985.04 sq. km.) of marine waters was overlayed on to the monument to bring increased protections, regulations, research and education and outreach capacity. At Muliāva, the sanctuary works with the NOAA National Marine Fisheries Service, US Fish and Wildlife Service and the American Samoa Government through an intergovernmental committee for the coordinated management of this incredible place. In 2013, at the recommendation of the Western Pacific Regional Fishery Management Council, NOAA National Marine Fisheries Service enacted additional regulations that prohibited all fishing within 12 nautical miles (22.22 km.) of Rose Island. Non-commercial fishing outside 12 nautical miles (22.22 km.) is prohibited unless authorized by a permit that allows for sustenance, traditional indigenous and recreational fishing (78 FR 32996).

Rose is an appropriate name for the atoll because of the rose-colored crustose coralline algae that dominate the area. Rose is located approximately 150 miles (241.40 km.) east of Pago Pago Harbor. It is the easternmost Samoan island and the southernmost point of the United States. One of the smallest atolls in the world, Rose consists of about .03 square miles (.08 sq. km.) of land and 2.5 square miles (6.47 sq. km.) of lagoon surrounded by a narrow barrier reef that are included in a United States Fish and Wildlife Service National Wildlife Refuge (US DOC NOAA ONMS 2012).

At Muliāva, scientists have chronicled a distinct environment within the archipelago with large numbers of fish and a unique coral community that includes over 270 species of reef fish. Rose has been referred to as a hotspot for fish biomass that supports especially high densities of small planktivorous damselfish (US DOC NOAA ONMS 2012).

Rose Atoll is the primary site for green sea turtle nesting in American Samoa and supports the highest densities of the giant clam *Tridacna maxima* in the Samoan archipelago. More than 93 percent of the adult brood stock of giant clams in the Samoan archipelago is within its protected lagoon. Although similar suitable habitat for the giant clam exists elsewhere in American Samoa, such as on Tutuila and Upolu in the Independent State of Samoa, these unprotected populations have been severely depleted. Elsewhere in the Pacific Islands (Fiji), the giant clam has been harvested to local extinction (US DOC NOAA ONMS 2012).

The sanctuary area also includes the submerged volcanic cone known as the Vailulu’u Seamount that has a diverse biological community that includes crinoids, octocorals, sponges, and cutthroat eels. Since 2003, an 1100 foot (335.28 m.) tall volcanic cone, known as Nafanua, has grown in the seamount’s crater. Scientists speculate that Nafanua will breach the sea surface within decades, forming a new island in the Samoan island group. The seamount cone has several types of hydrothermal vents that provide habitat for an unusual group of organisms, ranging from microbial mats to polychaete worms. A thriving population of the eel *Dysommina rugosa* occupies the summit of Nafanua, surviving on crustaceans imported to the system from the water column above (US DOC NOAA ONMS 2012).
References:

Appendix II: List of Acronyms

ASEPA: American Samoa Environmental Protection Agency
ASCC: American Samoa Community College
ASG: American Samoa Government
ASPA: American Samoa Power Authority
CRAG: Coral Reef Advisory Group
CRCP: Coral Reef Conservation Program
CZMP: Coastal Zone Management Program
DMWR: Dept. of Marine and Wildlife Resources
DOC: Department of Commerce
DOE: Department of Education
ENSO: El Nino Southern Oscillation
EPA: Environmental Protection Agency
FWS: Fish and Wildlife Service
IPO: Inter-decadal Pacific Oscillation
MPA: Marine Protected Area
NMFS: National Marine Fisheries Service
NMSAS: National Marine Sanctuary of American Samoa
NMSASAC: National Marine Sanctuary of American Samoa Advisory Council
NPSA: National Park Service of American Samoa
NOAA: National Oceanic Atmospheric Administration
OCI: Office of Curriculum and Instruction
ONMS: Office of National Marine Sanctuary
PDO: Pacific Decadal Oscillation
PFCs: Perfluorinated Chemicals
PNRS: Project Notification and Review System
SPREP: Secretariat of the Pacific Regional Environment Programme
USGS: United State Geological Survey
WRRC: Water Resources Research Center
Appendix III: Climate Impacts Summary Table

<table>
<thead>
<tr>
<th>Climate Variable and Trend</th>
<th>Observed Change</th>
<th>Trend</th>
<th>Relative Change</th>
<th>Future Projections</th>
<th>Confidence</th>
<th>Uncertainty</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature</td>
<td>Samoa</td>
<td></td>
<td>High</td>
<td>Central South Pacific</td>
<td>> High confidence in trend direction</td>
<td>> Magnitude of change varies by greenhouse gas emission scenario: B1 (lower) and A2 (higher)</td>
<td>Australian Bureau of Meteorology and CSIRO 2011; Finucane et al. 2012; Young 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Annual surface air temperature (compared to 1971-2000)</td>
<td>> Medium confidence in trend magnitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2030: +1.1-1.3°F (+0.61-0.72°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2050: +1.9-2.5°F (+1.06-1.39°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2090: +2.5-4.8°F (+1.39-2.67°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pacific Islands</td>
<td>> Extreme heat days will become more frequent and intense during the 21st century</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> High confidence in trend direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Medium confidence in trend magnitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea surface temperature</td>
<td>Pacific Islands</td>
<td></td>
<td>High</td>
<td>Pacific Islands</td>
<td>> High confidence in trend direction</td>
<td>> Magnitude of change varies by emissions scenario: B1 (lower) and A2 (higher)</td>
<td>Australian Bureau of Meteorology and CSIRO 2011; Keener et al. 2012; Young 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sea surface temperatures (compared to 1990, ranges represent low [B1] and high [A2] emissions scenarios) 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2030: +1.1-1.7°F (+0.61-0.94°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2055: +1.8-2.3°F (+1.28°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By 2090: +2.5-4.7°F (+1.39-2.61°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Samoa and Samoa</td>
<td></td>
<td>High</td>
<td>> Shifts in sea surface temperature will also be affected by ENSO, the PDO, and the IPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Variable and Trend</td>
<td>Observed Change</td>
<td>Trend</td>
<td>Relative Change</td>
<td>Future Projections</td>
<td>Confidence</td>
<td>Uncertainty</td>
<td>Source(s)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>-------</td>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Extreme Precipitation Events</td>
<td>Central South Pacific > No significant trend in the frequency of extreme rainfall events since 1965</td>
<td>🔄</td>
<td>Moderate</td>
<td>Central South Pacific > Extreme rainfall events will be correlated with tropical storm activity (see below), but are likely to increase in frequency and intensity during the 21st century</td>
<td>> Moderate confidence in trend direction > Low confidence in trend magnitude</td>
<td>> Extreme rainfall projections are highly variable, influenced by ENSO/PDO patterns, and other factors. > Extreme rainfall events that currently occur once every 20 years on average are generally simulated to occur four times per year, on average, by 2055.</td>
<td>Australian Bureau of Meteorology and CSIRO 2011; Keener et al. 2012; Young 2007</td>
</tr>
<tr>
<td>Precipitation and drought</td>
<td>American Samoa > No significant trends in annual precipitation or winter one-day precipitation volume since 1965 > No change in drought event frequency in 60 years Samoa > No significant trends in seasonal or annual rainfall from 1950-2009 or from 1890-2005</td>
<td>🔄</td>
<td>Low</td>
<td>Central South Pacific > Projections are highly variable and display conflicting results > Future conditions may include no change or a slight increase in mean annual precipitation with slight decreases during the dry season and slight increases during the wet season during the 21st century Samoa > Drought frequency isn't likely to exhibit major change during the 21st century</td>
<td>> Low confidence in trend direction and magnitude</td>
<td>> Precipitation projections for the Pacific Region are highly variable depending on emissions scenario and are influenced by many factors (e.g., ENSO/PDO/IPO phases, island location and</td>
<td>Australian Bureau of Meteorology and CSIRO 2011; Cheng and Gaskin 2011; Keener et al. 2012; Young 2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate Variable and Trend</th>
<th>Observed Change</th>
<th>Trend</th>
<th>Relative Change</th>
<th>Future Projections</th>
<th>Confidence</th>
<th>Uncertainty</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical storms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central South Pacific</td>
<td>> The number of tropical storms escalating to cyclones increased in 1991-2010 relative to 1970-1990.</td>
<td>↑</td>
<td>Low</td>
<td>American Samoa and Samoa</td>
<td>> Low confidence in trend direction and magnitude</td>
<td>> Tropical storm tracks will be influenced by regional variability related to ENSO, the PDO, and the IPO</td>
<td>Australian Bureau of Meteorology and CSIRO 2011; Emanuel 2005; Li et al. 2010; Seneviratne et al. 2012; Yu et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pacific Islands</td>
<td>> Increased storm intensity over the next 70 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American Samoa</td>
<td>> Potential reduction in cyclone activity as storm tracks shift toward the Central North Pacific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Samoa</td>
<td>> Low confidence in trend direction and magnitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Low confidence in trend direction and magnitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> Low confidence in trend direction and magnitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Samoa</td>
<td>> No trend in total streamflow, baseflow, or the number of extreme low- or high-flow days from 1960-1995</td>
<td>No trend</td>
<td>Low</td>
<td>American Samoa</td>
<td>> No specific projections, but streamflow will likely fluctuate with precipitation patterns</td>
<td>> Low confidence in trend direction and magnitude</td>
<td>> There is very little long-term data for American Samoa to derive trends and inform projections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> No trend</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> No change in drought frequency from 1942-2005, but events are correlated with El Nino conditions.
> There is very little long-term annual precipitation data for American Samoa to derive trends and inform projections.
<table>
<thead>
<tr>
<th>Climate Variable and Trend</th>
<th>Observed Change</th>
<th>Trend</th>
<th>Relative Change</th>
<th>Future Projections</th>
<th>Confidence</th>
<th>Uncertainty</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea level rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>> Global sea levels increased 3.4 mm (+/- 0.4 mm) per year from 1993-2009, representing a much faster rate of rise than the 20th century</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Tropical Pacific</td>
<td>> Relative rates of sea level rise matched or exceeded global rates from 1993-2010 due to enhanced trade wind conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Samoa</td>
<td>> Mean sea level increased 2.07 mm/year at Pago Pago from 1948-2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Islands</td>
<td>[↑] High</td>
<td></td>
<td>Pacific Islands</td>
<td>Region will experience roughly same mean average sea level rise as global trends. > By 2100: - "Low" scenario: 0.2 m - "Intermediate-Low" scenario: 0.5 m - "Intermediate-High" scenario: 1.2 m - "High" scenario: 2.0 m > Increased frequency of extreme sea level events (linked with high tide events)</td>
<td>> High confidence in trend direction > Low confidence in trend magnitude</td>
<td>> Magnitude projections vary based on model used (climate model vs. semi-empirical model) and emissions scenario. Additionally, sea level rise could accelerate if ice-sheet discharge increases, which is likely given current trends. > Regional variations in sea level rise likely due to land dynamics (subsidence/uplift) and changes in ocean circulation (ENSO/PDO) and wind patterns.</td>
<td>Cheng and Gaskin 2011; Marra et al. 2012; Nerem et al. 2010</td>
</tr>
<tr>
<td>Climate Variable and Trend</td>
<td>Observed Change</td>
<td>Trend</td>
<td>Relative Change</td>
<td>Future Projections</td>
<td>Confidence</td>
<td>Uncertainty</td>
<td>Source(s)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Wave height</td>
<td>Pacific Islands
 > No trend in wave heights available</td>
<td>✆</td>
<td>Low</td>
<td>Pacific Islands
 > Increased annual mean wave height in the southern tropical Pacific, decreased wave heights in most other Pacific areas</td>
<td></td>
<td></td>
<td>Few long-term records exist</td>
</tr>
<tr>
<td>Ocean acidification</td>
<td>Samoa
 > Aragonite saturation state declined from 4.5 to 4.1 between the 18th century and 2000</td>
<td>✅</td>
<td>High</td>
<td>Samoa
 > By 2060: aragonite saturation state will fall below 3.5, and continue declining thereafter</td>
<td></td>
<td>> High confidence in trend direction
 > Moderate confidence in trend magnitude</td>
<td>> Carbon cycles are difficult to model, and regional biases and downscaling challenges exist in current models</td>
</tr>
</tbody>
</table>
Appendix IV: Current and Future Adaptation Strategies Tables

Table 1. Current management goals, potential vulnerabilities, and current management actions for coral reefs.

For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality testing for bacteria and near shore nutrient input, sometimes resulting in beach closures.</td>
<td>Moderate</td>
<td>High</td>
<td>Serves as an indicator for possible impacts to coral reef habitat</td>
<td>Yes</td>
<td>Where: Areas susceptible to bleaching or currently bleached areas</td>
<td>Other resources action benefits: Better understanding of water quality pulses around coral reef habitats</td>
</tr>
</tbody>
</table>
Reduce litter and marine debris.

<table>
<thead>
<tr>
<th>Quality Measurement Periods</th>
<th>More studies to understand what is making it’s way into the bay (e.g., what medicines and tracers are found in nearshore water)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other resources action benefits:</th>
<th>Water quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sea turtles (reduces plastics)</td>
<td>Sea birds</td>
</tr>
<tr>
<td>- Coral habitats</td>
<td></td>
</tr>
</tbody>
</table>

| Other resources with potential conflicts: | None |

American Samoa Village Marine Protected Areas (MPAs): co-managed by communities and local government (Department of Marine and Wildlife Resources), includes No-Take MPAs and Community-Based Fisheries Management Programs. Each of these MPAs has different vulnerability levels and effectiveness.

<table>
<thead>
<tr>
<th>Where: In the 11 Village MPAs</th>
<th>Where: Territory-wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>How:</td>
<td>Ensure island-wide enforcement of regulations against littering</td>
</tr>
</tbody>
</table>

Where: Territory-wide

How:
- Ensure that openings do not happen during high stress conditions and coral bleaching events to allow for reef recovery

Other resources action benefits:
- All reef-dependent species

Other resources with potential conflicts:
- Subsistence and cultural fisheries practices
<table>
<thead>
<tr>
<th>Current Management Goal: Control crown-of-thorns starfish outbreaks.</th>
<th>Potential vulnerabilities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Incorporate a monitoring component to evaluate MPA effectiveness</td>
<td>• Temperature changes – unknown how crown-of-thorns starfish will respond</td>
</tr>
<tr>
<td>No discharge and anchoring in the Sanctuary</td>
<td>• Temperature and pH – if these factors cause decreased corals, there may less outbreaks</td>
</tr>
<tr>
<td>Moderate/High Enforcement action by NOAA Fisheries Office of Law Enforcement and DMWR Enforcement through Joint Enforcement Agreement. Effective with proper resources and if more mooring buoys are installed.</td>
<td>• Nutrient input – may affect crown-of-thorns starfish larvae</td>
</tr>
<tr>
<td>Moderate</td>
<td>Where: Coral reef areas, particularly in areas that are more prone to bleaching or other stressors (e.g., crown-of-thorns starfish)</td>
</tr>
<tr>
<td>Yes, helps water quality and coral reef habitat if enforced</td>
<td>How: Require no discharge/no anchoring in other areas beyond the Sanctuary</td>
</tr>
<tr>
<td>Yes, with possible expansion in other areas</td>
<td>Other resources action benefits: All reef dependent species.</td>
</tr>
<tr>
<td>Other resources with potential conflicts: None</td>
<td>Other resources:</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Target crown-of-thorns starfish eradication with oxbile</td>
<td>High</td>
</tr>
<tr>
<td>Manual eradication of crown-of-thorns starfish (spear or bash)</td>
<td>Low/Moderate</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>How:</td>
<td></td>
</tr>
<tr>
<td>- Obtain permission from/cooperate with local villages for water and reef access</td>
<td></td>
</tr>
<tr>
<td>- Train volunteers to distinguish between crown-of-thorns starfish scars versus bleaching/disease impacts to inform biologists/response teams</td>
<td></td>
</tr>
<tr>
<td>Other resources action benefits:</td>
<td></td>
</tr>
<tr>
<td>Saving corals from crown-of-thorns preserves fish habitat</td>
<td></td>
</tr>
</tbody>
</table>
increased diver risk with more handling due to venomous spines.

- Train spearfishers to eradicate local populations (possibly cheaper)
- Obtain permission from/cooperate with local villages for water and reef access
- Train volunteers to distinguish between crown-of-thorns starfish scars versus bleaching/disease impacts to inform biologists/response teams

<table>
<thead>
<tr>
<th>Ban take of large reef fish (e.g., humphead wrasse), which are believed to be crown-of-thorns starfish predators</th>
<th>Low/Unknown</th>
<th>Low/Unknown</th>
<th>Indirectly; leaves more viable coral populations to repopulate/recover from other stressors</th>
<th>Yes, but need more info</th>
<th>Where: Unknown; potential future management action once research is underway</th>
<th>Other resources action benefits: Could help large fish populations recover (e.g., humphead wrasse) and eventually allow these species to be fished in the future</th>
<th>Other resources with potential conflicts: None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not known which fish may eat young crown-of-thorns starfish, need more information.</td>
<td>Need more information on which reef fish to protect; need to identify effective predator.</td>
<td>Scale also an issue; 50,000+ crown-of-thorns individuals present.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Management Goal: Use education and outreach to protect coral reefs and bring the site to the people.

Potential vulnerabilities:
- Most climate changes will impact corals
- Sedimentation
- Reduced funds for education and outreach

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School programs such as Reef Check (geared toward any audience; provides education on coral fragility and importance of coral habitat so audience can become environmental stewards)</td>
<td>Moderate/High</td>
<td>Low/Moderate</td>
<td>Yes, helps improve understanding and support for reef protection and action to increase reef resilience</td>
<td>Yes</td>
<td>Where: Territory-wide</td>
<td>Other resources action benefits: All reef-dependent species</td>
</tr>
<tr>
<td>How:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other resources with potential conflicts: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have several education programs catered to different age groups that links connections between land and sea</td>
<td>Moderate/High</td>
<td>Low/Moderate</td>
<td>Yes, helps improve understanding and support for reef protection and action to</td>
<td>Yes</td>
<td>Where: All local schools Beyond American Samoa (virtually)</td>
<td>Other resources action benefits: All reef-dependent species</td>
</tr>
<tr>
<td>School curriculum lessons</td>
<td>Increase reef resilience</td>
<td>How:</td>
<td>Other resources with potential conflicts: None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanctuary Summer Science in the Village programs: have school kids visit ocean center or take eco-tours to learn basic science and complement lessons learned during school year - Teacher trainings</td>
<td>- Merge and consolidate federal and local programs to reach more people</td>
<td>- Moderate/High Visualization is a powerful tool - “Science of the Sphere” – has 3000 data sets, including climate change topics</td>
<td>- Use local climate data and make data more available for sharing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Virtual experience for students, allowing them to see changes, including climate change impacts with special goggles.
 - “Science of the Sphere” – has 3000 data sets, including climate change topics
 - Yes, helps improve understanding and support for reef protection and action to increase reef resilience
 - Yes
 - Where: Ocean Center
 - How: Use local climate data and make data more available for sharing
 - Other resources action benefits: All reef-dependent species
 - Other resources with potential conflicts: None
Table 2. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for coral reefs.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

<p>| Future Management Goal: Decrease nutrient input and sedimentation into coastal waters. |
|---|-----------------|-----------------|-----------------|---------------------------------|-----------------|
| Adaptation action | Effectiveness | Feasibility | Timeframe | Implementation (where/how) | Collaboration & Capacity |
| Ensure piggery compliance and enforce EPA regulations | Low/Moderate | High | Near/Mid | Where: Island-wide: small piggeries, family-based piggeries, community piggeries like community gardens (although community piggeries may cause conflict – disease spreading; maybe work in smaller villages) | Collaboration: EPA; Villages determine if family or community piggeries Internal: Capacity needed: Funding for public campaigns |
| Support sewer expansions and new waste water treatment plants; support proper septic tank installment in proper locations; remove existing cesspools | High | High | Near/Mid/Long | Where: Coastal area community septic systems; lease for the village septic system | Collaboration: - External: EPA, ASPA Capacity needed: - New, updated inventory of existing cesspools - Funding (millions) for new central waste water and continued removal |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>High (coastal)</th>
<th>High (upstream)</th>
<th>Low (upstream)</th>
<th>Near, as long as there is interest in villages and community-based groups</th>
<th>Where: Community villages</th>
<th>How:</th>
<th>Collaboration:</th>
<th>Capacity needed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant more trees/plants in coastal areas and in villages to reduce runoff. Plant vetiver grass by streams along with native trees. Ensure new construction projects are set back away from streams to prevent erosion.</td>
<td>High (coastal)</td>
<td>Low (upstream)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Public outreach and education</td>
</tr>
<tr>
<td>Ensure compliance of coastal development setbacks</td>
<td>Moderate/High</td>
<td>Low</td>
<td>Needs enforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Enforce 200 ft (60.96 m) for coastal development, 25 ft (7.62 m) from wetland, 50 ft (15.24 m) for commercial development</td>
<td></td>
<td></td>
<td></td>
<td>Near/Mid, if there is a will</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Increase setbacks and add a 25 ft (7.62 m) buffer from streams</td>
<td></td>
<td></td>
<td></td>
<td>Elements: Streams, wetlands, coastal areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start a wetlands restoration project</td>
<td>High Restoration plan</td>
<td>Moderate Plant mortality can be an issue (e.g., Coconut Point)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where: Coconut Point, Leone, Masefau, Vatia</td>
<td></td>
<td></td>
<td></td>
<td>How: Monitor for success</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration:</td>
<td></td>
<td></td>
<td></td>
<td>External: EPA, DMWR, school groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity needed:</td>
<td></td>
<td></td>
<td></td>
<td>Internal: Coastal Zone Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start a wetlands restoration project</td>
<td>High Restoration plan</td>
<td>Moderate Plant mortality can be an issue (e.g., Coconut Point)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where: Coconut Point, Leone, Masefau, Vatia</td>
<td></td>
<td></td>
<td></td>
<td>How: Monitor for success</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration:</td>
<td></td>
<td></td>
<td></td>
<td>External: EPA, Village mayor or pastor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity needed:</td>
<td></td>
<td></td>
<td></td>
<td>Internal: Community outreach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Increase law enforcement and fines for any violations (wetlands) | Low | Moderate/High | Near | Where: Island-wide | How: Increase enforcement | Collaboration:
- External: EPA, villages, ASPA
- Internal: ASPA
Capacity needed: More research to inform success |
| --- | --- | --- | --- | --- | --- | --- |
| Damage has been done, but there are opportunities for improvement in the future | Moderate | Near | Where: Island-wide | How: Work with villages and village councils | Collaboration:
- External: EPA, villages, ASPA
- Internal: Villages
Capacity needed:
- Funding
- Staff |
| Education/outreach on strengthening village laws – strengthen village councils while respecting different laws of each village
- Village anti-litter laws: enforcement for garbage and fishing, have issued fines in past
- External: EPA, USGS, ASPA
- Internal: Department of Public Works, ASPA
Capacity needed: Funding |
| Continue stormwater best management practices initiative
- Require that new development has permeable areas and rain gardens | High, if successfully implemented | Moderate (targeting stormwater outfalls) | Near | Where: Island-wide | How: More education in garbage removal in drains not filled by dirt | Collaboration:
- External: EPA, USGS, ASPA
- Internal: Department of Public Works, ASPA
Capacity needed: Funding |
Remove all wastewater outfalls; upgrade raw sewage discharges to secondary treatment

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Move deeper, cooler water to shallow, warmer areas – pipe down to cold water, pump up, and pipe to distribute | High, if successfully implemented | Moderate | Near | Where: Where existing outfalls are found Aunu’u
How: Remove outfalls | Collaboration:
- External: EPA, ASPA
- Internal: Department of Public Works, ASPA
Capacity needed: Funding |

Future Management Goal: Cooling for bleaching prevention and reduction.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Move deeper, cooler water to shallow, warmer areas – pipe down to cold water, pump up, and pipe to distribute | High, but need to make sure it’s stable in case of cyclones | Low, based on case study from Hawai’i and Great Barrier Reef | Long | Where: Hotspot by the airport, where there is a high temperature change and surface temperature. This site is favorable due to thermal dynamics and because it is close to shore, but there hasn’t been a feasibility study for this site. ASPA looking at mainstream renewable wind and solar.
How:
- Pipes/infrastructure for thermal cooling
- Permitting and infrastructure
- Examine lessons learned from Hawai’i and Great Barrier Reef | Collaboration:
- External: engineering, American Samoa Renewable Energy Committee, Ocean Thermal Energy Conversion technology
- Internal: ASPA, DMWR
Capacity needed: Funding (expensive) |
Future Management Goal: Develop resilient marine protected areas (MPAs) – design future MPAs in areas that are climate resilient and effective for multiple species (consider network of MPAs).

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| - Do a GAPS analysis on what is already in place and what is working to identify priority areas for protection and what changes/additions are needed
- Explore developing land-connected MPAs and include habitat protection for all species (e.g., sea birds, sea turtles) | Moderate/High | Moderate | Long (ongoing) | Where:
- West side reefs, some bays on the North side
- MPA with no take to help herbivore fish/locate in areas with good water quality
- Look at MPAs of contiguous coral reef that has done well historically; look at areas that do well after coral reefs
How:
- Promote and increase community acceptance of new MPAs, which may take a long time; instill values of habitat importance
- Shift from fishing-based MPAs (meant to rebuild fish stocks) to ecosystem-based MPAs and coral reef-focused MPAs | Collaboration:
- External: federal, local, and territory
- Internal: Contractor/DMWR, CRAG/Parks refuge
Capacity needed:
- Funding
- Staff
- Public support |

Future Management Goal: Assemble a coral reef database and develop a data sharing method for management and decision support.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Develop an easy exchange and accessibility of information to allow managers to assess changes over time | Moderate/High | High | Near | Where:
- American Samoa Coral Reef DATABASE (federal data archive)
- Local survey data
- Marine Protected Areas | Collaboration:
- External: NOAA Coral Reef Ecosystem Division, universities, data sharing plans |
Currently, not all projects have one data access point in American Samoa; would be good to have a centralized data access point for information sharing.

How: Make sure data are being made available to all

Capacity needed: Key personnel in each agency that is responsible for sharing

Future Management Goal: Use coral nursery gardens for restoration. Target nurseries of bleaching resistant strands. Make sure to have control sites.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select coral that does not bleach (including historic bleaching). - Test Acropora formosa (Staghorn) in coral heat tanks before transplanting - Need to look at all physical parameters</td>
<td>High (if water quality is good)</td>
<td>High (at localized scale; larger scale would require more funding)</td>
<td>Near (more sites, more involvement from multiple people)</td>
<td>Where: Select sites where water quality is good and other disturbances are low. Pago Pago is not a good area (disturbed due to dredging).</td>
<td>Collaboration: - External: Universities (Stanford, Old Dominion, University of Hawai‘i) - Internal: DMWR/National Park Service</td>
</tr>
<tr>
<td>How:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capacity needed: - Volunteers – teach them how to propagate - ASCC Marine Science Program - Funding</td>
</tr>
</tbody>
</table>

- Internal: DMWR/National Park Service
For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

Current Management Goal: Control residential/commercial development near mangroves to protect mangrove habitat.

Potential vulnerabilities:
- Sea level rise (causes mangrove damage or mortality)
- Storms (causes mangrove damage or mortality)

|---------------------------|-----------------------|---------------------|--|--|---|-------------------------------|
| Prevent building over mangroves through permitting process (Project Notification and Review System – PRNS) | Moderate | Low-Moderate (enforcement) | Reduces effects of erosion and storm events | Yes | Where: Villages with shoreline ownership
How:
- Increase training on importance of mangroves
- Increase knowledge of permitting process
- Increase setbacks and buffers behind mangroves and integrate into permitting process – current setbacks are ~25-50 ft (7.62-15.24 m). Is this sufficient under sea level rise scenarios? Should it be increased? | Other resources action benefits: Healthy mangroves provide fish habitat and de-nitrification benefits. Also benefits crabs and reefs. Other resources with potential conflicts: Complications as coastal land owners are primarily villages but permitting is by agencies. |
Table 4. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for mangroves and Pala Lagoon.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Reduce non-climate stressors such as debris from streams that destroy/smother mangrove habitat.

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove debris from mangrove habitats</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Near</td>
<td>Where: High priority watersheds and mangrove habitats such as those in Pala, Leone, and Vatia</td>
<td>Collaboration: American Samoa Power Authority, Le Tausagi group (education coordinators from different agencies), villagers, American Samoa Coastal Management Program (lead coordinator of Permit Notification and Review System), DMWR, Governor’s office, ASEPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: Engage volunteers and village residents</td>
<td>Capacity needed: People on the ground – volunteers, staff</td>
</tr>
<tr>
<td>Educate people on the effect of debris on mangroves and enforce ban on debris thrown out upstream</td>
<td>High</td>
<td>Moderate</td>
<td>Near</td>
<td>Where: High priority watersheds and mangrove habitats such as those in Pala, Leone, and Vatia</td>
<td>Collaboration: American Samoa Power Authority, Le Tausagi group (education coordinators from different agencies), villagers, American Samoa Coastal Management Program (lead coordinator of Permit Notification and Review System), DMWR, Governor’s office, ASEPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: Engage volunteers and village residents</td>
<td>Capacity needed: Funding, policy changes to create stricter regulations on debris</td>
</tr>
<tr>
<td>Increase use of stream catchments to catch debris</td>
<td>High</td>
<td>High</td>
<td>Near</td>
<td>Where: High priority watersheds and mangrove habitats such as those in Pala, Leone, and Vatia</td>
<td>Collaboration: American Samoa Power Authority, Le Tausagi group (education coordinators from different agencies), villagers, American Samoa Coastal Management Program (lead coordinator of Permit Notification and Review System), DMWR, Governor’s office, ASEPA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create mangrove education and outreach campaign to increase understanding of mangroves and understanding of existing guidelines in policies that protect mangroves</td>
<td>Moderate</td>
<td>High</td>
<td>Near</td>
<td>Where: All areas</td>
<td>Collaboration: DMWR, EPA, CZMP (all have own education programs), Le Tausagi group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How:</td>
<td>Capacity needed: Funding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Radio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- School curriculum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Cheap/local TV programs (KVCK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Newspapers</td>
<td></td>
</tr>
<tr>
<td>Create targeted village education and outreach campaign to increase likelihood of regulation enforcement</td>
<td>Moderate/ High</td>
<td>High</td>
<td>Near</td>
<td>Where: Villages</td>
<td>Collaboration: Village chiefs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: Office of Samoan Affairs</td>
<td>Capacity needed: Funding</td>
</tr>
</tbody>
</table>

Future Management Goal: Increase public knowledge of importance of mangroves and increase local enforcement.

- Permit Notification and Review System), DMWR, Governor’s office, ASEPA
- Capacity needed: May need permits for placements of catchments, funding, permission from landowners for placement
Table 5. Current management goals, potential vulnerabilities, and current management actions for water quality.

For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

Current Management Goal: Improve water quality.

<table>
<thead>
<tr>
<th>Potential vulnerabilities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Heavier rain events – increased inflow to sewage lines and water volume needing treatment, increased groundwater infiltration, increased sediment and debris runoff</td>
<td></td>
</tr>
<tr>
<td>• Increased number of storms/increased storm strength – increased damage to infrastructure, increased Tamaligi tree toppling</td>
<td></td>
</tr>
<tr>
<td>• Increased cost of electricity</td>
<td></td>
</tr>
<tr>
<td>• Salt water intrusion due to rising groundwater</td>
<td></td>
</tr>
<tr>
<td>• Sea level rise – increased damage to infrastructure, groundwater impacts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve sewage effluent quality and sewage treatment</td>
<td>High (UV elimination of pathogens)</td>
<td>High (UV)</td>
<td>Pathogens removed by UV light</td>
<td>UV – yes</td>
<td>UV – yes</td>
<td>Other resources action benefits:</td>
</tr>
<tr>
<td>- UV lights</td>
<td>Moderate (decreased effluent volume by reducing leaks)</td>
<td>Moderate (reducing leaks – replacing pipes, ASPA offers free septic pumping as part of groundwater protection recovery fee)</td>
<td>Reducing leaks moderately decreases effluent released into groundwater and surface water.</td>
<td>Decrease leaks – yes</td>
<td>- Low-lying communities</td>
<td>- Decreased pathogens and nutrients benefits many resources</td>
</tr>
<tr>
<td>- Fix leaking pipes</td>
<td>Low (managing nutrients, pharma and</td>
<td>New diffuser – yes</td>
<td>New diffuser helps spread</td>
<td>New diffuser – yes</td>
<td>- System-wide</td>
<td>- Leak proofing decreases costs and improves public health</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Treatment plants and power plants may need to be moved</td>
<td>Other resources with potential conflicts:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Move treatment plants in communities</td>
<td>- Limited money and land</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Create leak-proof system</td>
<td>- Groundwater protection recovery fee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Increase renewables and energy efficiency</td>
<td>- ASPA offers free septic pumping as part of groundwater protection recovery fee</td>
</tr>
<tr>
<td>Improve groundwater quality</td>
<td>fluorocarbons)</td>
<td>Low (pharma and fluorocarbons)</td>
<td>effluent and reduces nutrient concentrations</td>
<td>Yes</td>
<td>Where:</td>
<td>Other resources action benefits:</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Fix leaking pipes</td>
<td>High (pipes, cesspool)</td>
<td>Moderate (cesspool conversion requires management by families to work over long term)</td>
<td>Protect/improve groundwater quality</td>
<td></td>
<td>- Farms (pesticides)</td>
<td>- Increased energy consumption would increase cost (need to speed up renewable energy)</td>
</tr>
<tr>
<td>Seal cesspools and convert to septic</td>
<td>Moderate (oil – high for all who use it)</td>
<td></td>
<td></td>
<td></td>
<td>- Low-lying communities</td>
<td></td>
</tr>
<tr>
<td>Oil collection</td>
<td>Moderate (pesticides – high if farmers comply)</td>
<td></td>
<td></td>
<td></td>
<td>- Move low-lying septic systems</td>
<td></td>
</tr>
<tr>
<td>Pesticide control</td>
<td>Aquifers are resilient; higher elevation and microfilters would add to capacity</td>
<td></td>
<td></td>
<td></td>
<td>- Monitor because sea level rise may decrease aquifer volume</td>
<td></td>
</tr>
<tr>
<td>Identify resilient aquifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Create/enforce soil and pesticide protocols throughout watersheds</td>
<td></td>
</tr>
<tr>
<td>Microfiltration plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Improve surface and storm water quality</th>
<th>Moderate (nets)</th>
<th>High (nets – if there’s a will, but really need to stop debris)</th>
<th>Capture sediment and debris runoff</th>
<th>Yes</th>
<th>Where: By streams</th>
<th>Other resources action benefits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nets at stream mouths to catch debris</td>
<td>Moderate (nets)</td>
<td>High (rain gardens/soak pits – if placed correctly and in sufficient numbers)</td>
<td></td>
<td></td>
<td>- Debris/sediment capture benefits coral reefs and nearshore habitats/species</td>
<td></td>
</tr>
<tr>
<td>Rain gardens/soak beds</td>
<td>Low</td>
<td>Low</td>
<td></td>
<td></td>
<td>Other resources with potential conflicts: No answer provided by participants</td>
<td></td>
</tr>
<tr>
<td>Tamaligi tree removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNRS sediment requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for water quality.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Develop and instill a sense of responsibility in protecting watersheds and disposing of waste and trash appropriately.

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Increase public education and outreach | High | High | Near (1-2 years) | **Where:**
| | | | | - Project Notification and Review System (PNRS): public works enforcement of building codes |
| | | | | - Agency collaboration with villages |
| | | | | **How:**
| | | | | - Issue tickets and fines |
| Enforce anti-littering law | High | High | Near | **Where:**
| | | | | - Agency collaboration with villages |
| Implement and enforce environmental disposal fee to assist with funding | High | High | Near | **How:**
| | | | | - Issue tickets and fines |
| Find alternatives to pollutants we don’t have the capacity to dispose and treat (e.g., PFCs) | High | High | Near | **Capacity needed:**
| | | | | - Funding |
| | | | | - Policy change |
| | | | | - Increased political cooperation and will |
Table 7. Current management goals, potential vulnerabilities, and current management actions for giant clams.
For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

Current Management Goal: Increase giant clam populations.

Potential vulnerabilities:
- Increased sea surface temperature
- Ocean acidification
- Erosion/Sedimentation (affects water clarity and quality)

|---------------------------|-----------------------|---------------------|---|--|---|-----------------------------|
| Enforce harvest regulations to avoid over-harvest of this culturally popular food | High/Moderate | Low – enforcement requires funding | Helps maintain a healthy population. Does not really address climate vulnerabilities, but helps address the non-climate factor of over-fishing | Yes | Where: Territory-wide
How: Need better law enforcement. Work with village councils to ensure minimum size limits are locally enforced. | Other resources action benefits: Less fishing generally protects coral reef habitats
Other resources with potential conflicts: None known |
- Prohibition on take of clams in the sanctuary

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support hatchery for stocking in shallow waters to support fisheries and stocking clams in deep water beyond 100 ft (30.48 m). to support stock replenishment</td>
<td>High (50,000 clams per year)</td>
<td>Low (funding dependent)</td>
<td>Near-to Mid-term (takes about 5 years for harvesting time)</td>
<td>Where: Work with village council to get permission and place in local villages with good bay and water quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: Work with villages to enforce minimum size fishing; and the requirement to sell the giant clam with the shell (6” personal; 7” commercial)</td>
<td>Collaboration:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- External: University Master student to work with local schools and local village to increase support for giant clams restocking efforts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Internal: National Park Service, American Conservation Experience (NGO)</td>
</tr>
<tr>
<td>Conduct a genetic study of giant clams between islands to diversify seed source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capacity needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Graduate students for community outreach and studying impacts of thermal stress in hatchery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Funding</td>
</tr>
</tbody>
</table>

Table 8. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for giant clams.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Increase giant clam populations/stocks by supporting fisheries in shallow waters and stocking clams in deeper waters.
Table 9. Current management goals, potential vulnerabilities, and current management actions for reef fish.
For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

| Current Management Goal: Protect reef fish populations and ensure sustainable fishing practices. |
|--|---------|-----------------|-----------------|-----------------|-----------------|
| Potential vulnerabilities: | | Does Action Ameliorate Effects of Any Vulnerabilities? | Continue to Implement Action Given Climate Vulnerabilities? | Where/How to Implement Given Climate Vulnerabilities | Other Resource Considerations |
| • Stressed coral habitats will impact fish populations | | | | | |
| • Climate changes may be temporarily beneficial for herbivore fish | | | | | |
| • There may be abuse of subsistence fishing privileges for commercial use | | | | | |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully utilize and enforce fishing regulations</td>
<td>High (SCUBA spear fishing) – no more need for industry in filling SCUBA tanks for fishing, more controlled now</td>
<td>Moderate/Low (other fishing) – need more regulation and enforcement</td>
<td>Yes, but limited</td>
<td>Yes</td>
<td>Where: Territory-wide</td>
<td>Other resources action benefits:</td>
</tr>
<tr>
<td>- 2001 American Samoa Governor Executive Order banned SCUBA fishing due to depletion of reef piscivores and herbivores and increase in fishing efficacy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: Possible limits for reef fish including herbivores</td>
<td>- More protection for herbivorous fish</td>
</tr>
<tr>
<td>- Minimum fishing net size, and nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Protects coral reef habitat</td>
</tr>
</tbody>
</table>

Other resources with potential conflicts: None known
cannot be left overnight; nets can only be left unattended 3-5 hours.
- Daily catch limits exist in federal water (3-200 miles) (5-322 km).
- Community Fisheries Management Program (0-3 miles) (0-5 km.)
- Non-destructive fishing rule in territorial waters
- Existing no-take-areas

<table>
<thead>
<tr>
<th>Encourage traditional and cultural fishing methods – the fa’a-Samoan way” – the following sanctuary areas encourage traditional and non-destructive fishing practices: Fagalua/Fogāma’a, Aunu’u Multipurpose Area, Ta’u, Swains Island</th>
<th>Low/Moderate</th>
<th>Moderate/ High</th>
<th>Yes, but limited</th>
<th>Yes, if truly traditional fishing</th>
<th>Where: All villages</th>
<th>Other resources action benefits: Benefits coral reef habitat by reducing fishing impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>How: Make sure only true traditional fishing methods are allowed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other resources with potential conflicts: None known</td>
</tr>
</tbody>
</table>
Table 10. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for reef fish.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Promote diverse and healthy reef fish populations.

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set size limits – make sure they are over the reproductive age</td>
<td>Moderate/High (if enforced)</td>
<td>Low – lack of social or political support</td>
<td>Near/Mid – needs DMWR support</td>
<td>Where: Territory-wide</td>
<td>Collaboration: External: Village councils Internal: DMWR Capacity needed: Social buy-in Policy change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How: New legislations and regulations as well as enforcement capacity Broad-reaching education on importance of herbivore fish, maybe through villages</td>
<td></td>
</tr>
<tr>
<td>Set catch limits – number of individual fish per day (if sold, commercial license still needed)</td>
<td>Moderate/High (if enforced)</td>
<td>Low – complicated by many species present and different size</td>
<td>Near/Mid – needs DMWR support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational outreach to encourage not to fish during bleaching events and to highlight the importance herbivore reef fish</td>
<td>Moderate/ Low (takes lots of time)</td>
<td>Moderate</td>
<td>Near</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for sharks and rays.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Increase research on sharks and rays.					
Adaptation action	**Effectiveness**	**Feasibility**	**Timeframe**	**Implementation (where/how)**	**Collaboration & Capacity**
Increase research to identify spawning/rearing critical habitat (most are protected)	High	High	Near	Where: Territory-wide; in harbors, Airport Lagoon, offshore Sailele	**Collaboration:**
- DMWR
- Outside academics
- Hawai‘i Institute of Marine Biology
Capacity needed:
- Funding
- Staff |
| Increase research on climate change effects on sharks and rays | Moderate | Moderate | Near | Where: N/A | **Collaboration:** Academia
Capacity needed:
- Funding
- Staff |
Table 12. Current management goals, potential vulnerabilities, and current management actions for sea turtles.
For each current management action participants evaluated its effectiveness (likely to reduce climate vulnerability) and feasibility (likelihood of implementation), and identified climatic and non-climatic stressors the action could help to ameliorate the effects of. Given action effectiveness and feasibility, participants then evaluated whether or not the action should continue to be implemented. If the action was recommended for continued implementation, participants detailed any changes regarding where and how to implement given climate vulnerabilities. Lastly, participants evaluated whether there were potential conflicts with or benefits to other resources from action implementation.

Current Management Goal: Protect turtle nesting habitat.

<table>
<thead>
<tr>
<th>Potential vulnerabilities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Erosion</td>
</tr>
<tr>
<td>• Sea level rise (Rose Atoll is a major nesting site for green turtles, and is only 10 feet above sea level)</td>
</tr>
<tr>
<td>• Seawalls and other physical barriers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Require permits for sand mining – not a lot of space for nesting on Tutuila</td>
<td>Low – no enforcement</td>
<td>Low</td>
<td>New erosion of nesting habitat</td>
<td>Yes</td>
<td>Yes</td>
<td>Where: Territory-wide: areas within Tutuila, Ofu & Olosega where nesting is already high
How:
- Enforcement: possibly transition management authority from Parks and Recreation to another entity
- Education: community taking sand to make concrete for village graves; increase education on cumulative impacts of everyone “taking a little bit”
- Create low-cost opportunities</td>
<td>Other resources action benefits: Seabirds and shorebirds</td>
</tr>
</tbody>
</table>
to reduce sand removal (e.g., possibly crush glass bottles to create “fake” sand that can be used for concrete; encourage green/brown burials)
- Education on benefits of conserving sand in order to protect cultural uses; use to promote conservation
- Create cultural designation of sand mining sites
- Protect parrotfish to help create sand

| Amend the Project Notification and Review System (PNRS) setback requirement – 100 ft (30.48 m) from shoreline | Low | Low | New erosion of nesting habitat | Yes | Where: Territory-wide

How:
- Functionality: lots of development still happens very close to shoreline, so increase compliance and enforcement
- Education and knowledge of permitting process

Other resources action benefits: Seabirds and shorebirds

Other resources with potential conflicts: No answer provided by participants

| Monitor to detect number of turtles and eggs, satellite tagging to track migration routes | High (Rose Atoll – major nesting site) | High | No answer provided by participants | Yes | Where: Territory-wide

How:
- Document locations, including changes: data could help inform future locations of development and designate critical habitat.
- Track turtles that migrate to

Other resources action benefits: No answer provided by participants

Other resources with potential conflicts: No answer provided by participants
<table>
<thead>
<tr>
<th>Fiji and French Polynesia (complex migrations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identify genetic structure of population</td>
</tr>
<tr>
<td>- Increase education to decrease fishing during nesting seasons – create collaborations with news agencies to let public know when nesting occurs</td>
</tr>
<tr>
<td>- Increase public knowledge to help report nests (“I Saved a Turtle” t-shirt or patch)</td>
</tr>
<tr>
<td>- Get more temperature loggers out for tracking temperature</td>
</tr>
<tr>
<td>- SPREP: tagging databases so you can track who has tagged what</td>
</tr>
<tr>
<td>- Monitoring beach profiles at Rose Atoll to track changes from storms and cyclones – also LiDAR</td>
</tr>
</tbody>
</table>
Table 13. Potential future management goals, adaptation actions, and action implementation details including where and how to implement and collaboration and capacity needs for sea turtles.

Action effectiveness (likelihood of reducing vulnerability), feasibility (likelihood of implementation), and timeframe (near: <5 years; mid: 5-15 years; long: >15 years) were also evaluated for each adaptation action.

Future Management Goal: Protect turtle nesting habitat by preserving sand.

<table>
<thead>
<tr>
<th>Adaptation action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Create ban on sand mining (may require change in enforcement agency and need to include provisions to allow for cultural use) | Moderate | Low | Mid | **Where:** Known nesting beaches
How: May require change in enforcement agency dictated by Governor’s Office. Lobby the Fono. | **Collaboration:** Parks and Recreation, Village Councils, Governor’s Office, Fono, Office of Samoan Affairs
Capacity needed:
- Policy change
- Funding
- Staff |
| Increase education for why sand is critical for turtles | High | High | Near | **Where:** Territory-wide and Village Council meeting days (once a month)
How: DOC/Coastal Zone Management/Incorporate into curriculum for DOE, ASCC | **Collaboration:** DOC, Coastal Zone Management Program, DOE, ASCC, ASEPA, DMWR, Office of Samoan Affairs
Capacity needed: Funding |

Future Management Goal: Protect turtle nests from heat stress.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Increase native grass/vegetation planting to provide shade | High | Moderate | Near | **Where:** Known nesting beaches plus beaches with high potential for nests
How:
- Collect seeds/cuttings for propagation | **Collaboration:** Village Councils, DMWR, ASCC, Land Grant, Office of Samoan Affairs
Capacity needed:
- Staff |
Villages should take initiative for local plantings
Leverage and expand Territory coastal vegetation restoration efforts (living shorelines, coastal rain gardens) to protect turtles

- Funding
- Land for nursery

Future Management Goal: Protect turtles by increasing light management.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
</table>
| Use turtle-friendly street lights
- Paint over lights; paint side that faces beaches
- Use special types of light bulbs along shorelines | High | High | Near | **Where:** Along coastlines.
How: Public Works, working with DMWR and village councils | Collaboration: Public Works, DMWR, Le Tausagi, Office of Samoan Affairs
Capacity needed: Funding |
| Increase education for coastal residents and businesses to turn lights off during nesting season
- Motion sensor lights may already be in use | High | High | Near | **Where:** Coastal villages.
How: DMWR, Le Tuasagi school programs, outreach programs in villages | Collaboration: DMWR, Le Tausagi, Office of Samoan Affairs
Capacity needed: Funding |
Future Management Goal: Create education/outreach campaign about sea turtles and their habitat.

<table>
<thead>
<tr>
<th>Adaptation Action</th>
<th>Effectiveness</th>
<th>Feasibility</th>
<th>Timeframe</th>
<th>Implementation (where/how)</th>
<th>Collaboration & Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create widespread public awareness campaign</td>
<td>High</td>
<td>High</td>
<td>Near</td>
<td>Where: Territory-wide, village council re: nesting habitats</td>
<td>Collaboration: DMWR, Sanctuaries, National Park Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How:</td>
<td>Capacity needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Build off of school programs</td>
<td>- Staff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Targeted during peak nesting season</td>
<td>- Funding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Media blitz – commercials, billboards, school programs</td>
<td></td>
</tr>
<tr>
<td>Create a citizen science program for residents to report what they see</td>
<td>High</td>
<td>High</td>
<td>Near</td>
<td>Where: Territory-wide</td>
<td>Collaboration: DMWR, Sanctuaries, National Park Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How:</td>
<td>Capacity needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Create or find protocols for tracking and reporting turtle presence and nests</td>
<td>- Volunteers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- School programs</td>
<td>- Protocols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Make phone number to report presence and non-compliance; phone number should be catchy/in a jingle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Perhaps create volunteer-tourism opportunities (EarthWatch)</td>
<td></td>
</tr>
<tr>
<td>Engage village councils to help protect and enforce laws</td>
<td>High (within village boundaries there is high enforcement and compliance)</td>
<td>High</td>
<td>Near</td>
<td>Where: Villages</td>
<td>Collaboration: Village councils</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>How:</td>
<td>Capacity needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Target villagers – there will be higher compliance if villagers can be enforcers.</td>
<td>- Funding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Communication tool: demonstrate why protection is important and what will happen without protection</td>
<td></td>
</tr>
</tbody>
</table>