From Extremes to Ex-Streams: Ecological Drought Adaptation Brief

This management brief summarizes the results of a project evaluating the scientific body of research on climate adaptation actions relevant to ecological drought. This adaptation science assessment evaluated strategies developed and prioritized by participants at regional adaptation workshops by synthesizing supporting evidence from the literature. The brief presents findings on the benefits and limitations of these climate adaptation options from the accompanying report, Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate.

Ecological Drought in a Changing Climate

Ecological drought refers to an "episodic deficit in water availability that drives ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedbacks in natural and/or human systems" (Crausbay et al. 2017). Climate change will increase the risk of ecological drought with projected changes likely to result in cascading impacts on species, habitats, and ecosystem services, including tree mortality, increases in wildfires, and altered water and nutrient cycling processes. These impacts will exacerbate current resource management challenges such as conflicts over water resources, land use and degradation, invasive species, maintaining agricultural yields, and managing wildfires. This project evaluates and synthesizes the scientific body of research relevant to climate adaptation actions used to address ecological drought in priority ecoregions and ecosystems of the Northwest in order to identify benefits and limitations of specific management approaches.

Many ecological drought adaptation options are already in use by managers across the Northwest to meet different goals and objectives. Managers may also choose to alter the implementation of existing management actions to adapt to changing conditions, or develop novel approaches to respond to the challenges of ecological drought.

Continue Existing Management Action

Protect and restore existing forest habitat

Alter Implementation of Existing Management Action

Restore forest habitat using droughttolerant species

Develop and Implement Novel Actions

Create/protect forest habitat at higher elevations likely to maintain cooler, moister conditions

Ecological Drought Adaptation Approaches

Strategies that limit the effects of climate change on a resource and/or bolster a resource's capacity to retain fundamental processes and functions by maintaining relatively unchanged conditions over time.

Strategies that help a resource withstand the impacts of climate change by avoiding the effects of or recovering from changes to enable a return to prior conditions.

Strategies that intentionally accommodate change and/or enable resources to transition to a new state through adaptive responses.

Knowledge

Strategies aimed at gathering more information about climate impacts or the effectiveness of management actions.

Collaboration

Strategies to help coordinate efforts and/or capacity across landscapes or organizations.

Resistance Strategies: Benefits (+) and Limitations (-)

Reduce water	+ May reduce the effects of drought on wildlife and habitats		
withdrawals	+ Limiting groundwater withdrawals, particularly during droughts, may retain cool-water		
	springs to support vulnerable fish species		
	– Requires coordination and collaboration across management goals and landscapes		
Use exclosures and	+ Reduce access to sensitive habitats and help reduce damage in and adjacent to water		
fences to protect	sources		
groundwater-	+ Exclosures have been linked to higher soil infiltration rates, higher wetland species, and		
dependent habitats	higher recruitment and survival of the Columbia spotted frog		
and associated	+/- Fencing can reduce browsing pressure on drought-stressed habitats but exclosures		
species	over large areas may be cost-prohibitive		
Enhance	+ Watering can maintain post-restoration sites and improve post-fire seedling survival		
ecologically	+ Dams can be modified to mimic natural flow regimes to support downstream habitats		
available water	+/- Water sourced from natural rivers is typically more beneficial than water sourced from		
supply via	artificial irrigation channels		
environmental	– Complications associated with engineered environmental flows include loss of flow		
watering	diversity and reduced access to critical habitats for fish species		
	– May improve the spread of exotic aquatic weeds and invasive fish species		
Reduce tree	+ Thinning increases individual tree growth and reduces tree water stress, can increase		
density and fuel	soil moisture per tree or per leaf area, and has been shown to improve the condition of		
loads through thinning and	remaining trees by increasing canopy growth and nutrient uptake and increasing growing space for trees		
prescribed burns			
prescribed burns	encroachment over the long term, but results in more immediate loss of sagebrush and		
	sage grouse habitat		
	+/- Prescribed burning and thinning are effective at increasing soil nutrient and water		
	availability, but may lead to invasion of exotic annual grasses		
	– Regeneration treatments may indirectly increase stand vulnerability to drought by		
increasing evaporative losses and understory competition for soil moisture			
 Prescribed burns generate soil heat, which can reduce water infiltration and m 			
hydrophobic soils			
	– Extended droughts can reduce opportunities to use prescribed fire as particularly dry		
	conditions can make fires difficult to control		
	– Thinning may increase leaf-to-sapwood area ratios, which can cause increased individual		
	tree water demand		
Ĺ			

Resilience Strategies: Benefits (+) and Limitations (-)

Restore habitats by	+ Restoration of natives and removal of invasives linked to overall ecosystem health	
maintaining native	+ Removing invasives that consume more water (e.g., <i>Tamarix</i> and western juniper) can	
vegetation cover	reduce ecological drought effects	
and removing	- Western juniper removal has increased site susceptibility to invasion by exotic grasses (e.g.,	
invasive species	cheatgrass and Japanese brome), while tamarisk removal has been linked to invasions of	
	exotic forbs in the Southwest	
Enhance natural	+ Beaver dams and beaver dam analogs (BDAs) impound water and retain sediment,	
water storage (e.g.,	promoting higher water tables and groundwater recharge, increased water storage in	
beaver dams/dam	surrounding soils, increased water residence time	
analogs, large	+ Large woody debris (LWD) slows water flows and raises water tables, increases	
woody debris,	groundwater infiltration, and provides mesohabitats for fish	
green	+ Green infrastructure promotes groundwater infiltration and recharge	
infrastructure)	+ Rock structures (e.g., one-rock dams, media lunas) slow water flows, reduce erosion, and	
	enhance infiltration	
	+/- Effect of LWD varies depending on size of debris relative to size of water body	
Maintain and	+ Maintaining organic carbon in soils improves water retention and water use efficiency	
enhance infiltration,	+ Masticated materials can reduce soil water evaporation and increase water availability for	
water storage	deeply rooted trees, and may help retain snowpack in alpine and subalpine habitats	
capacity, and/or	+ Biochar application increases soil water retention and has supported enhanced growth and	
health of forest soils	nutrient uptake of drought-stressed plants	
	- Soil compaction from recreation, forest operations, and grazing can restrict the movement	
	and storage of water	
	+/- Restricting timing of access may only limit impacts in low-use areas as the maximum	
	impact of human trampling occurs rapidly	
Restore and	+ Increases water retention and storage potential	
reconnect	+ Restoration of meadow floodplains has been shown to significantly increase baseflow and	
floodplains groundwater storage in Sierra Nevada Mountains		
Use livestock	+ Livestock rotation can reduce grazing pressure and expedite post-drought recovery	
rotation and	+ Grassbanking has been successfully used to incentivize ranchers to rest areas of pasture on	
diversification to	their property in exchange for grazing access on other properties	
reduce pressure on	+ Diversifying livestock can ameliorate the effects of drought while maximizing production	
vegetation and soils	capacity (e.g., sheep and goats are more heat tolerant and require less water than cattle)	
	+/- Pastures may need to be completely rested for several seasons after drought and grazing	
	may need to be delayed until after herbaceous forage plants have produced mature seed	
Consider species	+ Biological and genetic diversity maximizes the ability of species to survive	
type, timing, and	+ Considering species from a range of climatic and altitudinal gradients broadens the source	
location	of seeds and seedlings that may be better adapted to drier conditions	
	+/- Maintaining a mix of older and younger trees of diverse sizes may reduce vulnerability to	
	disturbances; more mature trees in species mixtures may be less vulnerable to drought but	
	more vulnerable to pests	
	- Limited studies exist on changing the timing of seeding and planting	
Create or enhance	+ Wildlife water developments reduce the distance animals need to travel for water	
water supply (e.g.,	+/- Water developments concentrate livestock and grazing pressure in specific areas	
wildlife water	- Developments may increase competition between wild and domestic animals and trap and	
developments,	kill animals, and require capital investment and long-term maintenance	
constructed	+ Constructed wetlands are used as opportunistic habitat and may support population	
wetlands, canopy	persistence during dry periods	
manipulation, snow	+ Snow accumulation can be enhanced via thinning treatments in snow-dominated coniferous	
fencing)	forests and maintaining trees in even spatial distribution	
	- Fire suppression maintains or increases canopy cover, which can reduce snow accumulation	
	on the ground	
	+ Snow fences and vegetation barriers concentrate snow, recharge local soil water content,	
	and can augment local water supply	

Response Strategies Benefits (+) and Limitations (–)

Identify and protect drought refugia	+ Sites, such as those associated with higher and longer soil moisture retention rates, include topographically shaded slopes, thinner stands, areas of low bulk-density soils, valley bottoms, and riparian zones; mesic areas within dry forest habitats, such as gullies; intact floodplains with stable water availability from groundwater sources and flooding; and springs with topographic shading and sheltering at higher elevation, north- and northeast-facing slopes +/- Refugia at smaller scales (e.g., side channels) may be less resistant to disturbance than refugia at larger scales (e.g., wide floodplain areas, oxbow lakes) +/- Man-made water bodies can act as refugia and migration but water quality may limit their use by some species
Plant and store seed from drought- tolerant species and individuals	 + Successful trials have been conducted to establish whitebark pine outside of its current range - Existing seed transfer guidelines lack climate-informed temporal and spatial considerations to support decision-making +/- Lodgepole pine trials in western Canada have demonstrated that southern edge populations demonstrated the highest drought tolerance and could be good candidates for northward transplanting +/- Treatment sites as part of the Adaptive Silviculture for Climate Change project are evaluating different adaptation options; in Montana, managers are evaluating if and how the introduction of ponderosa pine into western larch forest stands may help larch survive in a warmer, drier climate
Protect vulnerable species through assisted migration and improved habitat connectivity	 + Fish translocations are most effective during wet periods + Maintaining waterhole connectivity can support wide-ranging species during periods of drought +/- Mixed evidence that translocations successfully increased juvenile growth rates of Carmel River steelhead populations in California, while translocations of fish species in Australia had limited effectiveness due to rapid onset and scale of critical water shortages Potential hybridization of native and non-native species, introduction of diseases and parasites, and potential extirpation of species Risks tend to increase with distance of transfer

Knowledge Strategies: Benefits (+) and Limitations (-)

Improve	+/- There is evidence supporting the use of several strategies and actions to respond to
understanding of	and recover from ecological drought impacts; however, there are still knowledge gaps and
ecological drought	areas for future research to support more informed decision making.
impacts and	
adaptation options	

Collaboration Strategies: Benefits (+) and Limitations (-)

Promote water	+ Water banking has been used to address ecological impacts from hydroelectric activity in
conservation through collaborative agreements (e.g., water banking, water trading, voluntary reductions)	the Columbia Basin and to restore natural water flows to the Yakima and Dungeness rivers + Water conservation collaboratives have been used to conserve water and restore riparian habitats, and balance the needs of conservation practitioners, ranchers, farmers, and municipalities through voluntary water use restrictions and water banking +/- Improving irrigation efficiency may limit water loss at diversions and ditches, maximize water absorption by plants and soil, and restore flows to benefit wildlife, but may lead to increased water consumption, ultimately exacerbating water shortages - Many drought management plans consider the ecological impacts of drought as triggered by streamflow variation, which encourages managers to prioritize reactive rather than proactive, long-term strategies

Prioritizing Adaptation Options for Implementation

When selecting adaptation actions for implementation, managers should consider both *effectiveness* (action reduces vulnerability) and *feasibility* (action capable of being implemented). An action with high effectiveness is very likely to reduce associated vulnerabilities and may benefit additional management goals or resources whereas an action with low effectiveness is unlikely to reduce vulnerability and may have negative impacts on other resources. An action with high feasibility has no obvious barriers and a high likelihood of implementation whereas an action with low feasibility has obvious and/or significant barriers to implementation that may be difficult to overcome.

The following figure and tables present feasibility and effectiveness rankings, which are based on evidence in the literature and/or expert opinion (e.g., manager-provided rankings during adaptation workshops). These tools can help managers prioritize strategies and actions for implementation (e.g., actions with high feasibility and high effectiveness), better target management efforts toward specific challenges (e.g., actions with low or moderate feasibility but high effectiveness), and/or evaluate whether to proceed with implementation (e.g., actions with high feasibility but high effectiveness).

	High	High F/Low E	Restore habitats (e.g., remove invasives, maintain natives)	Plant & store seed from drought-tolerant species and individuals	High F/High E
	u		Improve understanding of impacts & adaptation options	Maintain & enhance infiltration and/or health of soils Reduce tree density Consider species type, timing, & location	Restore & reconnect floodplains Enhance natural water storage Create or enhance water supply
FEASIBILITY	Ease of action implementation Moderate		Mod F/Mod E	Use livestock rotation & diversification Enhance ecologically available water supply via environmental watering Identify & protect drought refugia Promote water conservation through collaboration	Use exclosures & fences to protect water resources
					Facilitate migration & habitat connectivity
	Low				Reduce water withdrawals
	Γ¢	Low F/Low E			Low F/High E
		Low	Moderate		High
			EFFECTIVENE	SS	

Likelihood of reducing vulnerabilities

Specific adaptation actions were identified from a review of regional adaptation workshop results and literature. The following tables present actions that received the highest (e.g., moderate-high or high) rankings for implementation feasibility and effectiveness in reducing ecological drought vulnerabilities. A complete list of actions are available in the full report, *Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate*. Actions are classified by ecosystem relevance: Forest (FO), Grassland/Shrubland (G/S), Freshwater (FW), and Marine/Coastal (M/C).

Adaptation Strategy	Associated Action(s)	Feasibility	Effectiveness
Enhance ecologically available water supply via environmental watering	Manage water levels to maintain hydrologic function and supply proper soil moisture to vegetation adjacent to the stream during critical periods (e.g., by manipulating existing dams and water control structures or through restoration of natural dynamic water fluctuations) (FW)	Mod-High	High
Reduce tree density and fuel loads	Promote age class, species, structural, and/or spatial (e.g., forest gaps) diversity across the landscape using a variety of management tools (e.g., prescribed and wildland fire, regeneration harvest, thinning) (FO)	Mod-High	High
	Reduce density via variable means (e.g., thinning, prescribed fire, wildfire use, girdling, falling and leaving trees), with density and structural goals based on projected future conditions (FO)	Mod-High	Mod-High
	Consider using genetically improved (e.g., insect- or disease- resistant) seedling stock to increase resilience to disturbance such as drought (FO, G/S)	Mod-High	High
Consider species type, timing, and location in management activities	Favor or establish more drought- and heat-tolerant species on narrow ridge tops, south-facing slopes with shallow soils, or other sites that are expected to become warmer and drier (FO, G/S)	High	Mod-High
	(FO)	Mod-High	Mod-High
	Protect trees that exhibit adaptation to water stress (e.g., trees with low leaf area:sapwood ratio) (FO)	High	Mod-High
	Manage gaps and forest openings to increase snow catch accumulation, and use techniques to shade snow such as mulching with wood chips to extend the retention of snowpack and enhance water availability during the growing season (FO)	High	High
Create or enhance water supply	Use snow fences and reflective tarps to retain snowpack and enhance water availability during the growing season (FO, G/S, FW)	High	High
	Use wildlife water developments to ameliorate loss of naturally- occurring water sources for the benefit of wildlife, game species, and livestock (FW)	High	Mod-High
	Add wood to streams to enhance natural water storage (FW)	Mod-High	Mod-High
	Enhance natural water storage through the use of beaver dam analogs (FW)	Mod-High	High
Enhance natural water storage	Reintroduce, enhance, and maintain beaver populations to improve water storage (FW)	Mod-High	High
	Slow water flows and increase soil infiltration with rock structures (e.g., one-rock dams, media lunas) (G/S, FW)	High	Mod-High
	Utilize green infrastructure (e.g., bioswales, permeable pavement) (FW)	Mod-High	High

Actions that received the highest (e.g., moderate-high or high) rankings for implementation feasibility and effectiveness in reducing ecological drought vulnerabilities, classified by ecosystem relevance: Forest (FO), Grassland/Shrubland (G/S), Freshwater (FW), and Marine/Coastal (M/C).

Adaptation Strategy	Associated Action(s)	Feasibility	Effectiveness
Maintain and enhance infiltration, water storage	Maintain soil productivity through appropriate silvicultural practices (e.g., fuels treatments) (FO)	High	High
	Plant deep-rooted perennials to reduce runoff and improve infiltration (FO)	High	Mod-High
capacity, and/or health of soils	Retain coarse woody debris in the uplands and riparian areas to maintain moisture, soil quality, and nutrient cycling (FO, FW)	Mod-High	High
	Increase aquatic habitat structure, complexity, and connectivity to refugia in stream channels, off-channels, channels fed by wetlands, and floodplains (FW, M/C)	High	High
	Reconnect streams to floodplains/alluvial fans to improve hyporheic and base flow conditions (FW, M/C)	Mod-High	High
	Remove and/or modify roads to control erosion and runoff and restore floodplain and hydrological connectivity (FW, M/C)	Mod-High	Mod-High
Restore habitats by maintaining native vegetation cover and removing invasive species	Monitor, remove, control, and prevent the spread of non-native species as well as introduction/dispersal vectors (FO, G/S, FW, M/C)	Mod-High	Mod-High
Use livestock rotation and diversification to reduce pressure on vegetation and soils	Manage livestock grazing to restore ecological function of riparian vegetation and maintain streambank conditions (FW)	High	High
	Collect seed from trees that exhibit adaptation to water stress for future regeneration (FO)	High	High
Plant and store seed from drought- tolerant species and individuals	Plant native species that are well-adapted to drought and/or have a broader moisture tolerance range (FO, G/S, FW, M/C)	High	Mod-High
	Plant stock from seeds collected from healthy trees in warmer or drier locations in the region (FO)	High	Mod-High
	Seed or plant drought-resistant genotypes of commercial species where increased drought stress is expected (FO)	High	Mod-High
Identify and protect drought refugia	Identify and protect a network of sheltered mountain slopes, valleys, or forests with continuous shading canopy (FO)	Mod-High	Mod-High
Improve	Develop watershed models to describe forestry and climate change (e.g., snowpack, precipitation, temperature) interactions in order to identify ways to maximize water retention (FO, FW)	Mod-High	High
understanding of ecological drought impacts and	Evaluate the long-term adequacy of water delivery infrastructure to ensure that changes in hydrological patterns can be anticipated and managed effectively (FW)	High	Mod-High
adaptation options	Examine how restoration project maintenance may need to be restructured in drought years (FO, G/S, FW, M/C)	High	Mod-High

How were the ecological adaptation options identified?

Strategies and actions were sourced directly or modified from the Adaptation Partners' Climate Change Adaptation Library; Northern Institute of Applied Climate Science Adaptation Workbook; adaptation plans from the Stillaguamish Tribe of Indians, Puyallup Tribe of Indians, Yakama Nation, Jamestown S'Klallam Tribe, and Lummi Nation; and adaptation workshop results from the Nez Perce-Clearwater National Forests and Southern California Climate Adaptation Projects, among others.

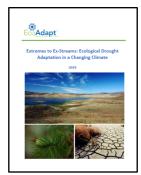
What are some on-the-ground examples and tools I should explore?

- Restoring Ecosystem Services Tool (REST): A computer model designed to assist managers in selecting species for restoration projects based on functional traits that best match specific management objectives, such as drought tolerance (<u>bit.ly/RestoringEcosystemServices</u>)
- Grass-Cast: Integrates climate change projections into forage productivity outlooks to support flexible stocking decisions before, during, and after droughts (<u>http://grasscast.agsci.colostate.edu</u>)
- Embracing Change: Adapting Conservation Approaches to Address a Changing Climate presents some examples of how conservation practitioners are applying adaptation on the ground (bit.ly/WCSEmbracingChange)
- Adaptive Silviculture for Climate Change Project (www.adaptivesilviculture.org): A nationwide series of experiments to evaluate resistance, resilience, and response treatments across different forest types. One such site is the western larch-dominated forests located in Montana's Flathead National Forest/Coram Experimental Forest where managers are creating forest stands that are more tolerant of a warmer, drier future climate, and using adaptive management to make modifications as needed. These adjustments may include introducing additional species or actively facilitating a transition to a hardwood forest or woodland if western larch can no longer survive in the area.

Where can I find more information?

- > Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate
- Case studies, resources, and tools on the Climate Adaptation Knowledge Exchange (<u>CAKEx.org</u>)
- SNAPP Ecological Drought Team products: <u>https://snappartnership.net/teams/ecological-drought/</u>
- Crausbay SD et al. 2017. Defining ecological drought for the twenty-first century. Bulletin of the American Meteorological Society 98:2543–2550.

Citation: Gregg RM, Kershner J. 2019. From Extremes to Ex-Streams: Ecological Drought Adaptation Brief. Bainbridge Island, WA.


Peer reviewers: Shelley Crausbay, Conservation Science Partners; Molly Cross, Wildlife Conservation Society; Britt Parker, National Oceanic and Atmospheric Administration National Integrated Drought Information System; Claire Phillips, U.S. Department of Agriculture Agricultural Research Service; Matt Reeves, U.S. Forest Service Rocky Mountain Research Station; Lynn Helbrecht, Megan Kernan, and Kiza Gates, Washington Department of Fish and Wildlife

Photos: Jonny Armstrong

Illustrations: Tera Johnson, Rachel M. Gregg

Product of EcoAdapt's State of Adaptation[™] Program. Funded by the Northwest Climate Adaptation Science Center. For more information, contact Rachel@EcoAdapt.org.

