Factors that enhance adaptive capacity:

- Estuarine species typically tolerant of variable conditions
- Several habitat areas are protected and actively managed, which may help buffer impacts
- Provide a variety of ecosystem services
- O‘ahu has a high number of estuarine habitats and habitat diversity improves with restoration efforts

Factors that undermine adaptive capacity:

- Many estuaries are dominated by invasive species or degraded by agricultural and urban runoff
- Limited capacity to accrete sediment and keep pace with sea level rise due to small tidal ranges
- Support many rare, endemic, and endangered species, which may be more vulnerable to climate impacts
ADAPTATION STRATEGIES FOR ESTUARINE HABITATS

<table>
<thead>
<tr>
<th>Types of Adaptation Approaches</th>
<th>Adaptation Strategy</th>
<th>Specific Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance: Prevent climate change from affecting a resource. Near-term approach</td>
<td>Restore and conserve native shoreline and estuary habitat</td>
<td>• Remove mangroves and other invasive vegetation</td>
</tr>
<tr>
<td></td>
<td>Reduce non-climate stressors that affect water quality</td>
<td>• Reduce pollutant and sediment runoff (e.g., revegetate slopes with native plants, reduce acreage of fallow agricultural land)</td>
</tr>
<tr>
<td>Resilience: Help resources weather climate change by avoiding the effects of or recovering from changes Near- to mid-term approach</td>
<td>Restore and conserve native shoreline and estuary habitat</td>
<td>• Restore native species</td>
</tr>
<tr>
<td>Response: Intentionally accommodate change and adaptively respond to variable conditions Long-term approach</td>
<td>Anticipate and facilitate habitat migration</td>
<td>• Acquire property with high future ecosystem value (e.g., less developed, less exposed/vulnerable sites) • Identify critical infrastructure that needs to be protected or relocated</td>
</tr>
<tr>
<td>Knowledge: Gather information about climate impacts and/or management effectiveness in addressing climate challenges Near- to long-term approach</td>
<td>Develop more efficient technologies/tools for habitat restoration and invasive species control</td>
<td>• Develop alternative removal technologies that the public can do themselves</td>
</tr>
<tr>
<td>Collaboration: Coordinate efforts and capacity across landscapes and agencies Near- to long-term approach</td>
<td>Develop more efficient technologies/tools for habitat restoration and invasive species control</td>
<td>• Enhance interagency coordination between groups working in the same landscape area</td>
</tr>
</tbody>
</table>

EFFECTIVENESS

- **Low F/High E**: Acquire property with high future ecosystem value
 - Identify critical infrastructure that needs to be protected or relocated
 - Reduce pollutant and sediment runoff
- **Mod F/Mod E**: Remove mangroves and other invasive vegetation
 - Restore native species
 - Develop alternative invasive removal technologies that the public can do themselves
 - Enhance interagency coordination between groups working in the same landscape area
- **High F/High E**: Further information and citations can be found in the Hawaiian Islands Climate Vulnerability and Adaptation Synthesis and other products available online at www.bit.ly/HawaiiClimate.

Reynier WA, Hilberg LE, Gregg RM. 2018. Estuarine Habitats: Vulnerability and Adaptation Brief for O’ahu. EcoAdapt, Bainbridge Island, WA.

Produced in cooperation with the Pacific Islands Climate Change Cooperative, with funding from the U.S. Fish and Wildlife Service.