Fresh Water
Ecosystem Service Climate Change Vulnerability Assessment Synthesis for O‘ahu

An Important Note About this Document: This document represents an initial evaluation of vulnerability for fresh water on O‘ahu based on expert input and existing information. Specifically, the information presented below comprises vulnerability factors selected and scored by habitat experts, relevant references from the literature, and peer-review comments and revisions (see end of document for methods and defining terms). The aim of this document is to expand understanding of ecosystem service vulnerability to changing climate conditions, and to provide a foundation for developing appropriate adaptation responses.

Ecosystem Service Description

Ecosystem services are defined as “the benefits provided to people, both directly and indirectly, by ecosystems and biodiversity” (Aylward et al. 2005). Fresh water is classified as a provisioning ecosystem service because it supplies both consumptive (e.g., drinking water, agricultural and industrial use) and non-consumptive (e.g., power generation) human uses (Aylward et al. 2005). Fresh water also supports other natural systems and processes that provide additional ecosystem services. For example, it supports aquatic habitats, which in turn provide ecosystem services such as food production, flood control, aesthetic values, and tourism and recreation (Aylward et al. 2005).

Native forests, wetlands, and other habitats help maintain fresh water supply by intercepting, slowing, and storing water. For example, O‘ahu’s forested Ko‘olau Mountains provide an estimated 133 billion gallons of water per year (Sumiye 2002). Native habitats also enhance water quality by anchoring and filtering sediment and filtering pollutants (Sumiye 2002).

O‘ahu’s fresh water resources include both groundwater and surface water. Wai‘anae and Ko‘olau are O‘ahu’s primary aquifers (Sumiye 2002), with central O‘ahu providing a majority of the island’s groundwater resources (Hunt 2004). O‘ahu has both confined and unconfined aquifers; extensive confined caprock aquifers prevent water discharge to the ocean, meaning O‘ahu has more abundant groundwater resources than other Hawaiian Islands (Izuka et al. 2016). O‘ahu also has extensive surface water resources in the form of perennial and intermittent streams and freshwater wetlands (Hawai‘i Department of Land and Natural Resources 2015). Groundwater primarily provides drinking water and supports aquatic habitat via discharge to streams, seeps, and springs, while surface water supplies aquatic habitats and irrigation needs (Anthony et al. 2004).

1 This information was gathered during a vulnerability assessment and scenario-planning workshop in December 2016 (http://ecoadapt.org/workshops/oahuvulnerabilityworkshop). Further information and citations can be found in the Hawaiian Islands Climate Vulnerability and Adaptation Synthesis and other products available online at www.bit.ly/HawaiiClimate.
Ecosystem Service Vulnerability

The fresh water ecosystem service on Oʻahu was evaluated as having high vulnerability to climate change due to high sensitivity to climate and non-climate stressors, high exposure to projected future climate changes, and low-moderate adaptive capacity.

Climatic factors such as drought, air temperature, and altered storm and extreme precipitation events have the potential to reduce fresh water supply, and along with sea level rise, may impair water quality. Flooding can temporarily impair water quality, while wind, wildfire, insects, and disease have the potential to alter groundwater infiltration and surface runoff quality by affecting the health and composition of regional forests. Non-climate stressors, including residential and commercial development, agriculture and aquaculture, energy development, water diversions, and groundwater development, alter water use and delivery, potentially compounding future climate-driven reductions in water availability. Human land uses (e.g., roads, urban areas, agriculture) and activities (e.g., recreation) can also impair water quality by introducing contaminants, and affect water capture by increasing runoff and introducing invasive species. Invasive species undermine watershed health and integrity, reducing water storage and degrading water quality.

Fresh water is highly valued by the public and there are several statewide and island-based efforts focused on promoting water conservation and watershed health and function, helping enhance the adaptive capacity of this service in the face of climate change. However, increasing population growth and variable enforcement of laws and policies will challenge management of this ecosystem service. Additionally, fresh water provisioning and quality will largely depend on climate impacts to native forests.

Sensitivity and Exposure

Climatic Factors and Disturbance Regimes

Groundwater and surface water supply are sensitive to climatic changes and disturbance regimes that affect water availability (Table 1), although groundwater may be less sensitive than surface water due to greater storage capacity. Climatic changes that influence water

<table>
<thead>
<tr>
<th>Fresh Water</th>
<th>Rank</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Future Exposure</td>
<td>High</td>
<td>Moderate²</td>
</tr>
<tr>
<td>Adaptive Capacity</td>
<td>Low-Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

² Workshop participants identified relevant future climate exposure factors and evaluated their confidence in the projected degree of exposure to these factors. After reviewing the scientific literature, EcoAdapt scientists evaluated and modified confidence rankings as needed to reflect uncertainties related to future climate projections. For example, future projections for precipitation are highly variable, with some models showing no change and others showing significant decreases or increases in precipitation. For more information on climate trends and future projections, please see the Hawaiian Islands Climate Vulnerability and Adaptation Synthesis.
availability include tropical storms, extreme precipitation events, drought, warmer air temperatures, altered wind patterns, and wildfire, among others. These climatic changes and disturbance regimes affect water delivery, movement, and storage by altering vegetative cover, composition, and water utilization, runoff, and infiltration in O‘ahu’s native ecosystems.

Fresh water quality is sensitive to climatic changes and disturbance regimes including storms, extreme precipitation, wildfire, and flooding that can elevate surface runoff and contaminant and sediment delivery to regional water sources, as well as reduce vegetative cover and its associated filtering mechanisms. Groundwater quality is also sensitive to saltwater intrusion near the shoreline and in older, deeper wells as a result of sea level rise. Overall, surface water quality and quantity is more sensitive to climatic factors and disturbance regimes than groundwater quality and quantity, and water quality in general is less sensitive to climate change than water supply (Vuln. Assessment Workshop, pers. comm., 2016).
Table 1. Current and projected future trends in climatic factors and disturbance regimes, as well as their potential impacts on fresh water. This ecosystem service is sensitive to the climatic factors and disturbance regimes listed below, and will likely be exposed to projected future changes in them.

<table>
<thead>
<tr>
<th>Climatic factors and disturbance regimes</th>
<th>Historical and current trends</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
</table>
| Extremely Precipitation events & Tropical storms/hurricanes | • Since 1950, overall trend towards decreased intensity and frequency of extreme precipitation events (Chu et al. 2010)
• From 1960–2000, the annual maximum one-day precipitation volume has decreased (Chen & Chu 2014)
• Tropical storm frequency was particularly high from 1982–1995, but then decreased slightly from 1995–2000 (Chu 2002)
• Overall, tropical storm frequency increased slightly since 1966–1981 (Chu 2002) | • Significant precipitation associated with storms and heavy rainfall events stimulates surface runoff and groundwater recharge (Oki et al. 2006)
 o Overall water storage is limited by the rapid transfer of water towards the coast due to small catchment basins, steep slopes, and limited channel storage (Brasher 2003)
 o Healthy native forests help slow and store stormwater, but storms can damage the canopy, undermining water interception and storage (Sumiye 2002)
| |
| | | • Fewer and smaller wet-season storms may decrease dry-season baseflow, reducing surface water availability (Bassiouni & Oki 2013)
| | | • Storm and extreme precipitation runoff can deliver contaminants (e.g., fecal indicator bacteria, pesticides, solvents) and sediment to streams, impairing surface water quality (Anthony et al. 2004; Izuka 2012) |
Sea level rise & saltwater intrusion

Historical and current trends

- At Honolulu station, sea levels rose an average of 1.44 mm/year (0.06 in) from 1905–2016 (equivalent to a change of 0.14 m [0.47 ft] in 100 years; NOAA/National Ocean Service 2017)
- At Mokuoloe station, sea levels rose an average of 1.26 mm/year (0.05 in) from 1957–2016 (equivalent to a change of 0.12 m [0.41 ft] in 100 years; NOAA/National Ocean Service 2017)

Projected future trends

There is high certainty that sea levels will continue to rise at increasing rates, but the magnitude and timing of change is less certain. Possible future scenarios include:

- By 2100, global sea level will likely rise between 0.3 to 2.5 m (0.98 to 8.2 ft); relative sea level may be higher in the Hawaiian Islands compared to global levels, ranging from 0.4 to 3.3 m (1.3 to 10.8 ft; Sweet et al. 2017)
- Sea levels in Honolulu may increase 0.26 to 1.41 m (0.85 to 4.6 ft) by 2100 (Kopp et al. 2014)
- There are no projections available for saltwater intrusion, but it is likely to increase due to sea level rise, drought, and groundwater withdrawals (Rotzoll et al. 2010; Ferguson & Gleeson 2012)

Drought

Historical and current trends

- Drought length increased in 1980–2011 compared to 1950–1979 (Chu et al. 2010)
- Drought conditions are usually less prevalent during La Niña years, and more prevalent during El Niño years (Dolling et al. 2009; Chu et al. 2010)

Potential impacts on ecosystem service

- Drought can degrade native forests and may promote non-native vegetation dominance (Michaud et al. 2015), affecting water capture, storage, and infiltration (Sumiye 2002)
- Drought decreases or eliminates streamflows, reducing surface water supply for instream and off-stream uses
Projected future trends

Drought projections are highly uncertain because they are primarily dependent on precipitation projections, which are variable and have high uncertainty. Possible future scenarios include:

- Drought risk is likely to increase by 2100 for low-elevation leeward areas, decrease at high elevations, and remain static elsewhere (Keener et al. 2012)

(Bassiouni & Oki 2013)

- Drought reduces surface water and groundwater supply and may impair water quality by shrinking the freshwater lens (Keener et al. 2012)
- Drought conditions enhance fire risk, which can impact water quality (Conry & Cannarella 2010)

Geographic variation

- Increased precipitation in windward areas (where most groundwater is drawn from) could benefit water supply (Vuln. Assessment Workshop, pers. comm., 2016)
- Leeward areas are particularly sensitive to decreases in precipitation (Vuln. Assessment Workshop, pers. comm., 2016)

Air temperature

Historical and current trends

From 1975–2006, the rate of air temperature increases has accelerated to 0.2°C (0.36°F) per decade, compared to overall increases of 0.04°C (0.07°F) per decade for all records from 1919–1975; the strongest warming is found at high elevations and in winter minimum temperatures (Giambelluca et al. 2008)

Projected future trends

Projections that air temperature will increase are highly certain, although the magnitude of change is less certain. Possible future scenarios include:

- Air temperature increases by 2°C (3.6°F) to 3.5°C (6.3°F) across the Hawaiian Islands by 2100, with more significant increases at higher elevations (Zhang et al. 2016)
- More frequent and more intense extreme heat days (Keener et al. 2012)

Potential impacts on ecosystem service

- Higher air temperatures increase evaporation and evapotranspiration, which can reduce surface and groundwater availability (Keener et al. 2012), particularly when paired with decreases in precipitation (Safeeq & Fares 2012)
- Increased temperature could increase habitat loss and cause forest alteration (Vuln. Assessment Workshop, pers. comm., 2016)
Wind circulation

Historical and current trends
- Since the 1990s, the Pacific trade winds (both the Walker and Hadley cells) have increased, corresponding with a negative Pacific Decadal Oscillation (PDO) phase (England et al. 2014)
- Trade wind direction has shifted from predominantly northeast to east from 1973–2009 (Garza et al. 2012), which represents a cyclical shift that is known to complete its cycle approximately every 45 years (Wentworth 1949)
- The frequency of trade wind inversion (TWI) occurrence increased an average of 16% starting in 1990 (Longman et al. 2015)

Projected future trends
Projections for the TWI are moderately uncertain due to the influence of large-scale atmospheric patterns (e.g., El Niño-Southern Oscillation [ENSO] and Pacific Decadal Oscillation [PDO]). Possible future scenarios include:
- 8% increase in TWI frequency of occurrence, corresponding to an almost 50% decrease in days without a well-defined TWI (decrease from 17% of days currently to 9% of days by 2100; Zhang et al. 2016)
- Possible decrease in TWI base height, ranging from small (Zhang et al. 2016) to more significant (Lauer et al. 2013)

Surface wind speed and direction may change, but studies have reached varying conclusions:
- Nov.–Dec. surface wind speeds across the Hawaiian Islands may decrease strongly by 2100, with small changes in surface wind speed possible in other seasons (Storlazzi et al. 2015)
- Surface winds in the Hawaiian Islands may increase

Potential impacts on ecosystem service
- Water supply and quality are likely to be affected by changing wind patterns because wind influences rainfall volume and frequency (Longman 2015)
- Increased TWI frequency has reduced high-elevation rainfall over the past 25 years (Longman 2015)
- More frequent TWIs in the future could reduce water supply by reducing orographic rainfall (Grubert 2010)
- Shifts toward increasing TWI frequency are greater during severe El Niño events, which can result in droughts that significantly impact water supplies (Longman 2015)
<table>
<thead>
<tr>
<th></th>
<th>Historical and current trends</th>
<th>Projected future trends</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverine flooding</td>
<td>No consistent trends were found in stream peak discharge statewide (Oki et al. 2010)</td>
<td>No regional stream/river flooding projections are available, but flows may become more variable/flashy if mean annual precipitation declines (Strauch et al. 2015)</td>
<td>Flash floods can temporarily impair water quality, particularly in highly altered urban watershed segments (Conry & Cannarella 2010)</td>
</tr>
<tr>
<td>Wildfire</td>
<td>From 1904–2011, the overall trend has been towards increases in area burned across all of the Hawaiian Islands, but with high interannual variability (Trauernicht et al. 2015)</td>
<td>No regional wildfire projections are available, but increased wildfire is likely if drier conditions and more drought occur (Trauernicht et al. 2015)</td>
<td>Wildfires can reduce future water supply by removing native vegetation and facilitating replacement by non-native species, which impair water capture and groundwater recharge (Conry & Cannarella 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High heat associated with fires can also reduce soil permeability, reducing groundwater recharge (Sumiye 2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wildfires impair surface water quality by removing vegetation, which increases runoff and erosion (Sumiye 2002; Trauernicht et al. 2015)</td>
</tr>
<tr>
<td>Insects</td>
<td>No information is available about trends in insect outbreaks</td>
<td>0.4 million forested acres across the Hawaiian Islands are at risk of experiencing a 25% decrease in standing live basal area by 2027 due to the combined threat of insects and disease (not taking climatic changes into account; Krist et al. 2014)</td>
<td>Insects, particularly invasive insects, may impact large areas of forest and cause extensive tree damage, affecting the ability of forests to regulate water supply and quality (Conry & Cannarella 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o 61,000 acres across the Hawaiian Islands are at risk</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Historical and current trends</td>
<td>Projected future trends</td>
<td>Potential impacts on ecosystem service</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>• 12,000 acres across the Hawaiian Islands are at risk due to myoporum thrips (Klambothrips myopori; Krist et al. 2014)</td>
<td>• No information is available for plant disease</td>
<td>• 0.4 million forested acres across the Hawaiian Islands are at risk of experiencing a 25% decrease in standing live basal area by 2027 due to the combined threat of insects and disease (not taking climatic changes into account; Krist et al. 2014)</td>
<td>• Pathogens or diseases can cause native tree mortality, potentially affecting surface water supplies and groundwater recharge by altering forest water capture, storage, and infiltration (USDA Forest Service 2015)</td>
</tr>
<tr>
<td>• Erythrina gall wasp (Quadrastichus erythrinae; Krist et al. 2014)</td>
<td></td>
<td>• On O‘ahu, the greatest threat from ‘ō‘hia rust (Austropuccinia psidii) is on windward slopes (Krist et al. 2014)</td>
<td>• The impact of native tree mortality on fresh water availability can be compounded in areas where dieback allows the increasing dominance of invasive species (Mortenson et al. 2016)</td>
</tr>
<tr>
<td>• 53,000 acres across the Hawaiian Islands are at risk due to koa wilt (Fusarium oxysporum f. sp. koae; Krist et al. 2014)</td>
<td></td>
<td>• Little change is expected in the suitable climatic space for ‘ō‘hia rust (Hanna et al. 2012)</td>
<td></td>
</tr>
</tbody>
</table>
Non-Climate Stressors

Sensitivity of the ecosystem service to climate change impacts may be highly influenced by the existence and extent of, and current exposure to, non-climate stressors (Table 2). Non-climate stressors often alter watershed hydrology (e.g., by increasing urbanization, altering water delivery, use, and storage, and removing or replacing native vegetation), which impacts fresh water availability and quality. Non-climate stressors can also directly degrade water quality by elevating sediment delivery or introducing contaminants and pollutants.

Groundwater and surface water quality and supply are affected differently by non-climate stressors (Vuln. Assessment Workshop, pers. comm., 2016). The most critical stressors affecting water supply are invasive species, groundwater development, contamination, and water diversions. The most critical stressors affecting surface water quality are agriculture, development, pollution and poisons, mammalian predators, ungulates, roads, and recreation. The most critical stressors affecting groundwater quality are agriculture, development, pollution and poisons, injection wells, and roads (Vuln. Assessment Workshop, pers. comm., 2016).

Table 2. Key non-climate stressors that affect the overall sensitivity of fresh water to climate change. Additional factors that could affect this ecosystem service to a lesser degree include invasive/problematic fish.

<table>
<thead>
<tr>
<th>Non-climate stressors</th>
<th>High impact (high confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential & commercial development</td>
<td>Potential impacts on ecosystem service</td>
</tr>
<tr>
<td></td>
<td>• Development can destroy or degrade native habitats critical for regulating water supply</td>
</tr>
<tr>
<td></td>
<td>and quality (e.g., wetlands; Stone 1988; Pacific Coast Joint Venture Hawai‘i 2006;</td>
</tr>
<tr>
<td></td>
<td>Van Rees & Reed 2014; Hawai‘i Department of Land and Natural Resources 2015)</td>
</tr>
<tr>
<td></td>
<td>• Development increases impermeable surface cover and runoff, reducing water capture</td>
</tr>
<tr>
<td></td>
<td>and storage (Grubert 2010)</td>
</tr>
<tr>
<td></td>
<td>• Runoff from developed areas delivers contaminants (e.g., solvents) to groundwater and</td>
</tr>
<tr>
<td></td>
<td>surface water systems, impairing water quality (Anthony et al. 2004)</td>
</tr>
<tr>
<td></td>
<td>• Urban runoff can also elevate suspended sediments in surface water systems, degrading</td>
</tr>
<tr>
<td></td>
<td>surface water quality (Anthony et al. 2004)</td>
</tr>
<tr>
<td>Agriculture & aquaculture</td>
<td>Potential impacts on ecosystem service</td>
</tr>
<tr>
<td></td>
<td>• Reduced forest cover as a result of agricultural conversion (Bassiouni & Oki 2013)</td>
</tr>
<tr>
<td></td>
<td>historically reduced surface water availability by causing shifts from perennial to</td>
</tr>
<tr>
<td></td>
<td>intermittent streams (Wilcox 1997)</td>
</tr>
<tr>
<td></td>
<td>• Agricultural irrigation reduces surface water availability for instream uses (Brasher</td>
</tr>
<tr>
<td></td>
<td>2003; Anthony et al. 2004; Oki et al. 2006)</td>
</tr>
<tr>
<td></td>
<td>• Pesticides and herbicides used for agriculture can contaminate surface and</td>
</tr>
<tr>
<td></td>
<td>• Agricultural fertilizers elevate groundwater and surface water nutrient levels,</td>
</tr>
<tr>
<td></td>
<td>reducing water quality (Anthony et al. 2004)</td>
</tr>
</tbody>
</table>
Despite the decline of agriculture on O‘ahu, there are still legacy agricultural impacts on groundwater quality because unconfined aquifers allow contaminants to seep into deep aquifer zones; groundwater contamination is highest in Central O‘ahu due to extensive historical agricultural chemical use (Anthony et al. 2004; Hunt 2004).

Surface runoff in agricultural areas can increase suspended sediment in surface water, degrading water quality (Anthony et al. 2004; Izuka 2012).

Fresh water aquaculture effluent can degrade fresh water quality by elevating nutrients and suspended sediment (Ziemann et al. 1992).

Pollutants & poisons

Potential impacts on ecosystem service

- Human land use activities (e.g., agriculture, urbanization) are the primary source of pollutants and impaired water quality on O‘ahu (Anthony et al. 2004; Conry & Cannarella 2010).

Energy production

Potential impacts on ecosystem service

- Biofuel production (e.g., sugarcane crops) can be water intensive, affecting future water use and supply (Grubert 2010).

Roads, highways & trails

Potential impacts on ecosystem service

- Roads, highways, and trails increase runoff, reducing water storage (Sutherland et al. 2001; Conry & Cannarella 2010).
- Roads and highways can degrade surface and groundwater quality by introducing pollutants (e.g., oil, chemicals; Conry & Cannarella 2010).

Groundwater development

Potential impacts on ecosystem service

- Groundwater withdrawals can reduce or eliminate surface water availability in streams by reducing baseflow (Brasher et al. 2003; Brasher 2003; Oki et al. 2006; Yeung & Fontaine 2007; Mair & Fares 2010; Safeeq & Fares 2012).
- Groundwater withdrawals that exceed recharge rates can compromise fresh water quality by increasing saltwater intrusion (Rotzoll et al. 2010; Ferguson & Gleeson 2012).

Water diversions

Potential impacts on ecosystem service

- Water diversions can eliminate or reduce stream surface water availability (Brasher et al. 2003; Brasher 2003; Oki et al. 2006; Yeung & Fontaine 2007).
- Upstream water diversions may affect groundwater recharge, influencing future water availability (Hawai‘i Department of Agriculture 2003).

Recreation

Potential impacts on ecosystem service

- Recreation activities can promote invasive species spread, potentially affecting watershed health (Conry & Cannarella 2010).
<table>
<thead>
<tr>
<th>Invasive/ problematic parasites & pathogens</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Surface water supply and groundwater recharge may be affected by shifts in forest structure and composition as a result of non-native pathogen introduction and spread (e.g., ‘ō‘hia rust; Loope & Giambelluca 1998; Loope & Uchida 2012; USDA Forest Service 2015; Mortenson et al. 2016)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invasive/ problematic flammable grasses</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Flammable invasive grasses contribute to increased wildfire severity and area burned, increasing erosion potential (Ellsworth et al. 2013, 2014; Traunernicht et al. 2015)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invasive/ problematic mammalian predators</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Exotic mammalian predators (e.g., rats, mongoose, cats) may contribute to degraded water quality by elevating fecal indicator bacteria (Dunkell et al. 2011b) and shedding parasites (e.g., Leptospira, Toxoplasma; Dubey & Jones 2008; Buchholz et al. 2016)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invasive/ problematic ungulates</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Feral ungulates increase runoff by trampling, consuming, and removing native vegetation and increasing soil compaction, which undermines water capture and storage (Bruland et al. 2010; Dunkell et al. 2011a)</td>
</tr>
<tr>
<td></td>
<td>• Ungulate grazing can degrade surface water quality by increasing erosion and sedimentation (Pacific Coast Joint Venture Hawai‘i 2006; Bruland et al. 2010; Dunkell et al. 2011b)</td>
</tr>
<tr>
<td></td>
<td>• Enhanced sedimentation can impair functioning of native ecosystems critical for water supply and quality regulation (e.g., wetlands; Pacific Coast Joint Venture Hawai‘i 2006)</td>
</tr>
<tr>
<td></td>
<td>• Ungulate grazing can also degrade water quality by increasing surface water fecal indicator bacteria (Dunkell et al. 2011b; Strauch et al. 2016) and shedding parasites (Buchholz et al. 2016)</td>
</tr>
<tr>
<td></td>
<td>• Feral ungulates also promote the spread and establishment of non-native plants, affecting watershed hydrology (Conry & Cannarella 2010)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invasive/ problematic trees & shrubs</th>
<th>Potential impacts on ecosystem service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Non-native forest vegetation (e.g., strawberry guava [Psidium cattleianum], miconia [Miconia calvancens]) may reduce surface water and groundwater availability by affecting annual streamflow, baseflow, and groundwater recharge, compounding climate-driven reductions in water availability (Kaiser 2006; Bassiouni & Oki 2013; Strauch et al. 2017)</td>
</tr>
<tr>
<td></td>
<td>• In a study plot on the windward side of Hawai‘i, results indicate that full restoration of wet forests invaded by strawberry guava would increase mean annual water yield by 2.8% (MacKenzie et al. 2014)</td>
</tr>
<tr>
<td></td>
<td>• Invasive trees and shrubs can alter or degrade lowland wetland habitats (e.g., California grass [Urochloa mutica], pickleweed [Batis maritima], seashore paspalum [Paspalum vaginatum], and Pulchea species), affecting water storage and filtration (Stone 1988; Bantilan-Smith et al. 2009; O‘ahu National Wildlife Refuge Complex & U.S. Fish and Wildlife Service 2010, 2011; Hawai‘i Department of Land and Natural Resources 2015)</td>
</tr>
</tbody>
</table>
Invasive/Problematic Social Insects

Potential impacts on ecosystem service
- Surface water supply and groundwater recharge may be affected by shifts in forest structure, composition, and health as a result of non-native social insects (e.g., ants; Conry & Cannarella 2010; USDA Forest Service 2015)

Population Growth

Potential impacts on ecosystem service
- O‘ahu is the most populous and developed island in the Hawaiian Islands, and the population is projected to continue to grow in the coming years (Trust for Public Land & Office of Hawaiian Affairs 2015)
- Population growth is likely to affect water demand and usage (CH2M Hill 2013), the distribution and integrity of native ecosystems critical for regulating water supply and quality (O‘ahu National Wildlife Refuge Complex & U.S. Fish and Wildlife Service 2011), and the degree of exposure to other non-climate stressors and their associated impacts (e.g., development, recreation; Anthony et al. 2004)

Adaptive Capacity

Management and maintenance of fresh water in the face of climate change is supported by high public value of this ecosystem service, mutual benefits with other ecosystem services (e.g., flood and erosion control), and statewide and regional planning and protection efforts (Table 3). However, variable enforcement of laws and policies and degraded resilience of native forests to climatic changes is likely to challenge management of this ecosystem service.

Table 3. Adaptive capacity factors that influence the ability of fresh water to adapt to projected future climate changes. Factors that receive a ranking of “High” enhance adaptive capacity for this ecosystem service (+), while factors that receive a ranking of “Low” undermine adaptive capacity (−).

<table>
<thead>
<tr>
<th>Adaptive capacity factors</th>
<th>Low-moderate adaptive capacity (high confidence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic value & management potential</td>
<td>+ High public value: Clean and abundant fresh water is a necessity for life and many other aspects of societal living (e.g., agriculture; Vuln. Assessment Workshop, pers. comm., 2016) + Maintenance of the fresh water ecosystem service has mutual benefits for flood and erosion control and traditional cultural practices (Vuln. Assessment Workshop, pers. comm., 2016) + Land-use planning can help reduce groundwater contamination; for example, groundwater quality has been protected near Honolulu by ensuring that unconfined aquifer zones are not subjected to land uses associated with high contaminant levels (Anthony et al. 2004) + There are some statewide (e.g., Hawai‘i Water Conservation Plan) and island-based efforts (e.g., Ko‘olau and Wai‘anae Mountains Watershed Partnerships) to promote water conservation and maintain water quality (Sumiye 2002; CH2M Hill 2013) +/- Moderate societal support for ecosystem service conservation and management: There are laws and regulations in place, but these are often not enforced or backed by action and funding (Vuln. Assessment Workshop, pers.</td>
</tr>
</tbody>
</table>
There are no alternate ways to access fresh water (CH2M Hill 2013)
 - Limited availability may increase human willingness to change behavior to continue to access this service (Vuln. Assessment Workshop, pers. comm., 2016)
 - However, excessive water usage can threaten availability of this resource in the future, particularly given an increasing human population and the threats of climate change (CH2M Hill 2013)

Low-moderate likelihood of managing or alleviating climate change impacts:
Management will likely increase when fresh water becomes a serious issue, but management capacity to buffer climate impacts is less certain (Vuln. Assessment Workshop, pers. comm., 2016)
- Increasing populations on O‘ahu will also challenge future fresh water management (Vuln. Assessment Workshop, pers. comm., 2016)
- Conflicts with other services such as recreation, tourism, hunting, and cultural practices (Vuln. Assessment Workshop, pers. comm., 2016)

Other adaptive capacity factors
- Low resilience of native forests to climate impacts will undermine the resiliency of this ecosystem service (Vuln. Assessment Workshop, pers. comm., 2016)

Recommended Citation
Reynier WA, Hilberg LE, Kershner JM, Gregg RM. 2018. Fresh Water: An Ecosystem Service Climate Change Vulnerability Assessment Synthesis for O‘ahu. EcoAdapt, Bainbridge Island, WA. Produced in cooperation with the Pacific Islands Climate Change Cooperative, with funding from the U.S. Fish and Wildlife Service.

Literature Cited
Brasher AMD, Wolff RH, Luton CD. 2003. Associations among land-use, habitat characteristics, and invertebrate community structure in nine streams on the island of O‘ahu, Hawai‘i. Water-

Trust for Public Land, Office of Hawaiian Affairs. 2015. Finding balance between development and conservation: The O’ahu Greenprint. Trust for Public Land, Honolulu, HI.

Hawaiian Islands Climate Synthesis Project: Vulnerability Assessment Methods and Application

Defining Terms

Exposure: A measure of how much of a change in climate or climate-driven factors a resource is likely to experience (Glick et al. 2011).

Sensitivity: A measure of whether and how a resource is likely to be affected by a given change in climate or factors driven by climate (Glick et al. 2011).

Adaptive Capacity: The ability of a resource to accommodate or cope with climate change impacts with minimal disruption (Glick et al. 2011).

Vulnerability: A function of the sensitivity of a particular resource to climate changes, its exposure to those changes, and its capacity to adapt to those changes (IPCC 2007).

Vulnerability Assessment Model

The vulnerability assessment model applied in this process was developed by EcoAdapt³ (Hutto et al. 2015, EcoAdapt 2014a, EcoAdapt 2014b, Kershner 2014), and includes evaluations of relative vulnerability by local stakeholders who have detailed knowledge about and/or expertise in the ecology, management, and threats to focal habitats and ecosystem services. Stakeholders evaluated vulnerability of each resource by discussing and answering a series of questions for sensitivity and adaptive capacity. Habitat exposure was evaluated by EcoAdapt using future climate projections from the scientific literature; ecosystem service exposure was evaluated by workshop participants using the climate impacts table provided by EcoAdapt. Each vulnerability component (i.e. sensitivity, adaptive capacity, and exposure) was divided into specific elements. For example, habitats included three elements for assessing sensitivity and five elements for adaptive capacity. Elements for each vulnerability component are described in more detail below.

Stakeholders assigned one of five rankings (High, Moderate-high, Moderate, Low-moderate, or Low) for sensitivity and adaptive capacity. Stakeholder-assigned rankings for each component were then converted into scores (High-5, Moderate-high-4, Moderate-3, Low-moderate-2, or Low-1) and the scores averaged (mean) to generate an overall score. For example, scores for each element of habitat sensitivity were averaged to generate an overall habitat sensitivity score. Scores for exposure were weighted less than scores for sensitivity and adaptive capacity; this was due to greater uncertainty about the magnitude and rate of future change. Sensitivity, adaptive capacity, and exposure scores were combined into an overall vulnerability score calculated as:

\[
\text{Vulnerability} = [(\text{Climate Exposure} \times 0.5) \times \text{Sensitivity}] - \text{Adaptive Capacity}
\]

³ Sensitivity and adaptive capacity elements were informed by Glick et al. 2011, Manomet Center for Conservation Sciences 2013, and Lawler 2010.
Elements for each component of vulnerability were also assigned one of three confidence rankings (High, Moderate, or Low). Confidence rankings were converted into scores (High-3, Moderate-2, or Low-1) and the scores averaged (mean) to generate an overall confidence score. These approximate confidence levels were based on the Manomet Center for Conservation Sciences (2013) 3-category scale, which collapsed the 5-category scale developed by Moss and Schneider (2000) for the IPCC Third Assessment Report. The vulnerability assessment model applied here assesses the confidence associated with individual element rankings, and uses these rankings to estimate the overall level of confidence for each component of vulnerability as well as overall vulnerability.

Rankings and scores presented should be considered measures of relative vulnerability and confidence (i.e. comparing the level of vulnerability between the focal resources evaluated in this project).

Vulnerability and confidence rankings and scores for a given element were supplemented with information from the scientific literature. The final vulnerability assessment summaries for a given resource include stakeholder-assigned rankings, confidence evaluations, and narratives summarizing expert opinions and information from the scientific literature.

Habitat & Ecosystem Service Elements

* Sensitivity & Exposure (Applies to Habitats and Ecosystem Services)*

1. **Climate and Climate-Driven Factors:** e.g., air temperature, precipitation, freshwater temperature, sea surface temperature, sea level rise, soil moisture, altered streamflows, etc.

2. **Disturbance Regimes:** e.g., wildfire, flooding, drought, insect and disease outbreaks, wind, etc.

3. **Future Climate Exposure:** e.g., consideration of projected future climate changes (e.g., temperature and precipitation) as well as climate-driven changes (e.g., altered fire regimes, altered flow regimes, shifts in vegetation types). Experts were provided with a summary of historical, current, and projected future climate changes for the main Hawaiian Islands.

4. **Non-Climate Stressors:** e.g., land-use conversion (e.g., residential or commercial development), agriculture and/or aquaculture, transportation corridors (e.g., roads, railroads, trails), water diversions, invasive and other problematic species, pollution and poisons, etc. For non-climate stressors, experts were asked to evaluate sensitivity, whether the habitat or ecosystem service is currently exposed to that stressor, and whether the pattern of exposure is widespread and/or consistent across the study area or is highly localized (e.g., exposure to aquaculture is highly localized but exposure to invasive grasses is often widespread).

* Adaptive Capacity (Habitats)*

1. **Extent and Integrity:** e.g., habitats that occur in multiple locations vs. single, small areas; high integrity vs. degraded habitats

2. **Habitat Isolation:** e.g., adjacent to other native habitat types vs. isolated habitats, barriers to dispersal (e.g., development, energy productions, roads, water diversions, etc.)
3. **Resistance and Recovery:** e.g., *resistance* refers to the stasis of a habitat in the face of change, *recovery* refers to the ability to “bounce back” more quickly from stressors once they do occur

4. **Habitat Diversity:** e.g., diversity of component native species and functional groups in the habitat

5. **Management Potential:** e.g., ability of resource managers to alter the adaptive capacity and resilience of a habitat to climatic and non-climate stressors (societal value of habitats, ability to alleviate impacts)

Adaptive Capacity (Ecosystem Services)

1. **Intrinsic Value and Management Potential:** e.g., ability of managers to alter the adaptive capacity and resilience of a service to climatic and non-climate stressors (societal value of ecosystem services, ability to alleviate impacts)

Literature Cited

EcoAdapt. 2014a. A climate change vulnerability assessment for aquatic resources in the Tongass National Forest. EcoAdapt, Bainbridge Island, WA.

Kershner JM, editor. 2014. A climate change vulnerability assessment for focal resources of the Sierra Nevada. Version 1.0. EcoAdapt, Bainbridge Island, WA.

